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Abstract
We consider the nonlinear coupling between an exact vortex solution in a Bose–Einstein
condensate and a spectrum of elementary excitations in the medium. These excitations, or
Bogoliubov–de Gennes modes, are indeed a special kind of phonons. We treat the spectrum of
elementary excitations in the medium as a gas of quantum particles, sometimes also called
bogolons. An exact kinetic equation for the bogolon gas is derived, and an approximate form of
this equation, valid in the quasi-classical limit, is also obtained. We study the energy transfer
between the vortex and the bogolon gas, and establish conditions for vortex instability and
damping.
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1. Introduction

The area of Bose–Einstein condensates (BECs), specially
those produced with laser cooled low density alkaline gases,
has been explored in the last two decades in many different
directions [1, 2]. BECs are indeed quantum fluids, which like
the classical fluids allow for the existence of sound waves,
usually called elementary excitations or Bogoliubov modes.
The formation of quantum vortices can be considered as one
of their most remarkable properties.

Vortices in BECs are nonlinear structures which have
been studied by many authors, in both experiments [3, 4] and
theory [1, 5]. Similarities with Rossby waves, as those
existing in the rotating atmosphere of planets, has also be
explored [6]. Abrikosov arrays or lattices of quantum vortices
can be excited, and display oscillations called Tkachenko
modes [7, 8], as first observed by [9]. Rossby–Tkachenko
modes, corresponding to a general class of lattice oscillations,
can also be considered [10].

In this work, we consider the interaction of vortices with
a spectrum of elementary excitations in the medium. These
excitations, or more generally Bogoliubov–de Gennes (BdG)

modes, are indeed a special kind of phonons. BdG modes can
be seen as generalizations of Bogoliubov modes, valid for a
non-uniform medium. Here we assume that the condensate is
uniform, if we ignore the influence of the confining potential.
Otherwise, it will be in a Thomas–Fermi equilibrium and will
satisfy the usual parabolic density profile. However, the
existence of a turbulent spectrum of fluctuations will modify
this equilibrium, in such a way that the condense will appear,
for each BdG mode inside the spectrum, as a non-uniform or a
modified Thomas–Fermi equilibrium [11]. The vortex solu-
tions will then be defined on this modified equilibrium. We
treat the spectrum of elementary excitations in the medium as
a gas of quantum particles, sometimes also called bogolons.
This could be relevant to the excitation of vortices in a tur-
bulent BEC [12]. In the present context, bogolons are used to
identify bosonic excitations in the condensate, but they can
also be used in a more general context, to design fermionic
excitations in superfluids and superconductors [13].

Starting from the usual BdG mode equations, we derive
an equivalent wave-kinetic equation describing the evolution
of an appropriate Wigner function. Wigner functions were
used in the past to describe the condensate itself [10]. But
here the Wigner functions are used to describe the BdG or
bogolon modes, while both the background condensate and
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the vortices are described with the usual mean field wave
functions.

The vortex dispersion relation in the presence of an
arbitrary bogolon spectrum is derived. Conditions for the
excitation and damping of vortices due to the presence of a
BdG or bogolon spectrum are established. Special cases are
considered explicitly. In a generic turbulent medium, several
vortices co-exist with the bogolon spectrum. Here we focus
on the elementary processes associated with a single vortex,
and although the interaction energy between two vortices
could also be modified by the background spectrum, this will
not be addressed in the present work.

The structure of the paper is the following. In section 2,
we present the basic equations describing the BEC in the
mean field approximation. In section 3, using the the auto-
correlation function for two distinct pairs of time and posi-
tions, the kinetic equation for the bogolon gas is derived.
Section 4 focuses on the evolution of a single vortex in a
turbulent background described by the appropriate Wigner
quasi-probability function. In section 5 the question of vortex
energy increase or damping is addressed in terms of the new
kinetic theory. Finally in section 6 our conclusions are
collected.

2. Basic formulation

We describe the evolution of BEC using the mean-field
approximation. For that purpose, we start with the GP
equation, which can be written as

( ∣ ∣ ) ( ) ( ) 
y y y

¶
¶

= + = -


+
t

H g H
m

U ri ,
2

. 10
2

0

2 2

0

Here we use the standard notation, where ψ is the condensate
order parameter, ( )U r0 the confining potential, and g the
coupling constant. Let us assume a generic solution of the
form

( ) [ ( ) ˜ ( )] ( ) ( )y y y m= + -t t t tr r r, , , exp i , 20

where y0 describes the slow condensate field, and ỹ is a high
frequency perturbation, which can be associated with
turbulence. It will be used to describe a superposition of
elementary excitations in the medium. Here, μ is the chemical
potential. Replacing this in equation (1), and averaging over a
time interval much longer than the period of the turbulent
fluctuations, to be specified later, we get for the average
condensate field

[ ( ) ] ( ) y
m y

¶
¶

= + + -
t

H g n ni 2 , 3T
0

0 0 0

where we have used the two density variables, ∣ ∣y=n0 0
2

characterizing the average or equilibrium condensate density,
and ∣ ˜ ∣y= á ñnT

2 obtained by averaging over the turbulent
fluctuations. Here, we should notice that ỹá ñ = 0 and
y yº á ñ0 . Subtracting equation (3) from (1), we obtain for

the fast component of the matter field

˜
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with the new Hamiltonian ( ) m= + -H H gn r2r 0 0 . We
should notice that we have, in this equation,
∣ ˜ ∣ ∣ ˜ ∣y d y= +nT

2 2, where nT is the slow part and ∣ ˜ ∣d y 2

contains the high frequency mixing of the BdG spectrum.
Such spectrum can be explicitly described as

˜ ( ) [ ( ) ( ) ( ) ( )] ( )*åy w w= - +t u t v tr r r, exp i exp i , 5
k

k k k k

where each mode is identified by the quantity k, representing
a set of discrete numbers of a continuum of wavevectors, wk

are the eigenfrequencies, and the pair of functions ( )u rk and
( )v rk are the corresponding BdG field components. Replacing

this in equation (4), and neglecting the nonlinear mode
mixing terms, we get the usual BdG equations for each mode

( ) ( ) ( )
( )

* w y w y- = + = -H u g v H v g u, .
6

k r k k k r k k0
2

0
2

In homogeneous condensates, and in a broad range of
situations discussed in our previous work [11], we can assume
solutions that satisfy the equations ( ) ( ) = -u v k u v, ,k k k k

2 2 .
We can then easily solve equations (6) and derive the mode
dispersion relation

( ) ( ) ( )w m= + - -H gn gn2 , 7k k 0
2

0
2

with ( )= +H k m U r2k
2 2

0 . If we associate the turbulence
fluctuations to short wavelengths, much shorter than the size
of the condensate, we can neglect the confining potential and
set =U 00 , as well as m = gn0. We are then reduced to the
well known expression

( )
w = + =c k

k

m
c

gn

m4
, 8k s s

2 2
2 4

2
0

Here cs is the Bogoliubov sound speed. A generalization of
this dispersion relation to twisted BdG modes in homo-
geneous, cylindrical and toroidal geometries can be found in
[11]. At this point we introduce ∣ ∣ ( )j=u u exp ik k u and

∣ ∣ ( )j=v v exp ik k v . The mode energy, or density, can then be
written as

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣∣ ∣ ( ) ( )y j j= = + + -n u v u v2 cos 9k k k k k k u v
2 2 2

For mode components in quadrature, we have
( )j j- =cos 0u v , and the usual Bogolioubov norm implies

that ∣ ∣ ∣ ∣= +u v1k k
2 2. Other, zero-energy modes could also

be considered [14], for which ∣ ∣ ∣ ∣=u vk k
2 2. At this point, it

should be noticed that equations (6) can be reduced to

[ ( ∣ ∣ )] ( ) w y- - =H g u 0. 10k r k
2 2 2

0
2 2

It is useful to introduce the new quantities

( ) ( ) ( ) ( ) ( ) ( )
( )

w w= - = -U t u t V t v tr r r r, exp i , , exp i
11

k k k k k k

2
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They obviously satisfy the wave equation

( ) ( )w
¶
¶

- =
⎛
⎝⎜

⎞
⎠⎟t

U V, 0, 12k k k

2

2
2

where wk is determined by equation (8). This will be useful in
the study of the nonlinear coupling between the BdG modes
(or bogolons) and a vortex, as shown next.

3. Kinetic equation for the bogolon gas

In order to study the energy transfer between a slowly varying
perturbation, more specifically, a single vortex, and a back-
ground spectrum of turbulent fluctuations, we use for the slow
component of the condensate wavefunction

( ) ( ) ( ) ( )y y y= +t tr r r, , , 13v0 00

where the first term is the steady-state part of the condensate,
and yv is the disturbance associated with the vortex. We now
have

∣ ∣ ∣ ∣ ∣ ∣ ( )* *y y y y y y y= + + = +n n, . 14v v v0
2

0 00 00 0 00
2 2

We notice that, for =U 00 and m = gn0, we have
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This expression can be obtained using equation (14) and the
definition of Hr, stated after equation (4). Replacing this in
equation (10), using (11), and neglecting the second order
contributions from the vortex perturbation, we are then led to
the conclusion that, in a condensate perturbed by a vortex yv,
the BdG or bogolon mode can be described by

( ) ( )¶
¶

- -
 

- =
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥t
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G U V
2 2

, 0, 16k k

2

2 0

2 2 2

with the auxiliary function ( )ºG G tr, defined by

( ) ( )* *


y y y y= +G
g n

2 , 17v v

2
0

2 00 00

where the quadratic terms in yv were ignored. It can easily be
seen that this mode equation reduces to equation (12), above,
when the vortex disappears and y = 0v . This perturbed mode
equation has now to be coupled to the evolution equation for
the vortex field yv, which in turn will depend on the mode
functions ( )U V,k k , as shown below.

But, before considering the vortex equation, it is useful to
replace equation (16) by a wave-kinetic equation capable of
describing an arbitrary superposition of BdG modes, or in
other words, an arbitrary bogolon gas. For that purpose, we
follow the standard Wigner–Moyal procedure [10], focusing
on the field Uk, given the symmetry with Vk. We start by
introducing the auto-correlation function for two distinct pairs

of time and positions, as defined by

( ) ( ) ( )* *= ºK U t U t U Ur r, , . 18k k12 1 1 2 2 1 2

From equation (16) we obtain the evolution equation for this
quantity as

( )

( ) ] ( )
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2

2
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2
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2

2
2

2

2 1
4

2
4

1 2 12

where we have used the obvious notation ( )ºG G tr ,j j j , for
( )=j 1, 2 . We now define new pairs of space variables

( )= +r r r 21 2 , and = -s r r2 2, and similarly for time
( )= +t t t 21 2 , and t = -t t2 1, and introduce the double

Fourier transformation

( )

( )
( ) ( · )

( )
ò ò

t

p
w
p

w wt

º

= -

K K t

W t

r s
k

r k k s

, , ,
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2

d

2
, , , exp i i .

20

12

3

The new function ( )wºW W tr k, , , is the Wigner function
for the BdG field. Replacing this in equation (19) we are then
able to derive the following equation determining the
evolution of W

· ( ) ( )
w

¶
¶

+  = L⎜ ⎟⎛
⎝

⎞
⎠t

W G Wv
1

sin . 21k

This is the wave-kinetic equation for the bogolon field, as
described by the Wigner function W. Here, we have used the
bogolon group velocity vk, as determined from the above
dispersion relation

( )w
w

=
¶
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= +
⎛
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k
k

2
. 22k

k
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2
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2

In equation (21) we have also used the double-sided operator

· ( )
w
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¬ ¶
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2
, 23

where 
¬

and ¶
¬

¶t act backwards on G, whereas ¶


¶k and

w¶


¶ act forward on W. The wave-kinetic equation (21) can
also be written in another equivalent form, as

·
( )
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[ ] ( · )
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ò òw p p
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¶
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+  =
W
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´ - -- +
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W G

W W t

v
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q

q r

i
1

2

d

2

d

2
,

exp i i .
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k 3

In this new equation we have used the quantities
( )wº  W W W k q2, 2 , and the Fourier components

( ) ( ) ( · ) ( )ò ò wW = - +G t G t tq r r q r, d d , exp i i 25

In the wave-kinetic description of the BdG mode field we can
also assume that the frequency wk of each mode k is
determined by its linear dispersion relation. This assumption
is sometimes called the particle approximation, and justifies

3
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the use of a reduced Wigner function, defined as

( ) ( ) ( ) ( )p w d w w= -W t W tr k r k, , 2 , , , 26k

This reduced form of W will be used in the following.
To complete our discussion, let us assume the quasi-

classical or geometric optics approximation, where the
bogolons can be described as classical quasi-particles. In this
limit, diffraction and other phase effects are neglected, and we
can use L Lsin in equation (21). This quasi-classical
approximation can also be recovered from equation (24), by
using the development

· ( )
w


W ¶

¶


¶
¶

W W
W Wk

k2 2
27

Replacing this in (24), we obtain a Vlasov-type of equation,
with the form

· · ( )¶
¶

+  +
¶
¶

=⎜ ⎟⎛
⎝

⎞
⎠t

Wv F
k

0. 28k k

Here, the quantity ( )w= - GF 2k k plays the role of a force
acting on the BdG quasi-particles.

4. Vortex in a bogolon field

We consider now the evolution of a vortex in a turbulent
background, as described by the Wigner quasi-distribution

( )W tr k, , . For simplicity, we use the geometric optics
approximation. Generalization to the exact wave-kinetic
description involves an heavier description, but is straight-
forward. The turbulent gas of bogolons is then described by
equation (28), while the vortex is described by equation (3).
At this point, it should be noticed that

∣ ˜ ∣ ( )
( )

( )òy
p

º á ñ =n W tr k
k

, ,
d

2
. 29T

2
3

Using equation (13), this allows us to rewrite equation (3) in
the new form

[ ] ( )
( )

( )

 ò
y

m y y
p

¶
¶

= + - +
t

H gn g W tr k
k

i 2 , ,
d

2
.

30

v
v0 0 00 3

We can also assume that the static mean field y00 is
determined by the condition, [ ]m y+ - =H gn 00 0 00 . This
will determine the Thomas–Fermi density profile. We have
also neglected the yv contribution to the last term of
equation (30), which is valid for the perturbative analysis to
be discussed here. In the nonlinear saturation regime, this
contribution would have to be included.

At this point, we assume a generic vortex solution of the
form ( ) ( ) ( )y = Y - Wt tr r, exp iv . We can also write, for the
bogolon gas distribution, ( ) ( ) ( )d= +W t W W tr k r r k, , , ,0 ,
where ( ) ( ) ( )d = - WW t W tr k r k, , , exp iv is the perturbation
of the bogolon gas, induced by the presence of the vortex.

Replacing this in equation (30), we get

[ ] ( )
( )

( )

 òm y
p

WY = + - Y +H gn g W r k
k

2 ,
d

2
.

31

v0 0 00 3

In order to derive a closed equation for the quantity Ψ, we
need to relate Wv to Ψ, which can be done with the wave-
kinetic equation (28). Noting that

( )*
w

y= - Y
g

F
2

, 32k
k

00

we obtain

( · ) · ( )*
w

y- W +  = Y
¶
¶

W
g W

v
k

i
2

. 33k v
k

00
0

To proceed further, we take the plausible assumption that the
spatial structure of Wv has the same shape of the vortex itself,
which allows us to write ( ) ( ) ( )= YW Ar k r r k, ,v v . The last
term in equation (31) becomes equal to

( )
( )

∣ ∣

· ( )
( · ) ( )

( )

ò

ò

y
p

y

w p

=- Y

¶ ¶
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v

k k

00 3
2

00
2

0
3

Here, we have introduced the new vector function ( )ºQ Q r ,
such that = Y YQ . Similarly, equation (33) can be written
in terms of the quantity Av, as

( ) · ( )
( · )

( )*
w

y= -
¶ ¶
W -

A
g W

r k Q
k

v Q
,

2 i
. 35v

k k
00

0

It is useful to notice that, in the absence of bogolon
turbulence, the vortex solution would imply that mW = .
The vortex solution would therefore be determined by the
simple equation

[ ] ( ) ( )m+ - Y =H gn r2 0. 360 0

For a vortex around the z-axis, the corresponding solution
would therefore be of the form ( ) ( ) ( ) ( )qY = FR r z lr exp i ,
where the integer l is the vortex charge, and cylindrical
coordinates were used. The presence of turbulence introduces
an energy correction to the vortex,  , as determined by

( ) mW = + 37

Assuming that equation (36) is still satisfied, we can reduce
equation (31) to

( )
( )

( ) òy
p

Y = g W r k
k

2 ,
d

2
. 38v00 3

Finally, using equation (30), and integrating over the entire
volume V of the condensate, we obtain

( ) ·
( )

( )
( · )

( ) ò ò p w
= -

¶ ¶
W -

g

V
n

W
r r Q

k k
v Q

d
d

2 i
. 39

V k k

2

00 3
0

This is the main result of the present paper. It gives the energy
correction to the vortex due to the presence of an arbitrary
spectrum of BdG turbulence, as described by the unperturbed
Wigner function W0.

4

J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 145302 J T Mendonça et al



5. Vortex stability

We can now analyze the problem of vortex stability and the
possible exchange of energy between the vortex and the
bogolon spectrum of elementary excitations. First, we notice
that the vector function ( )Q r can be written in a more explicit
form as

( )º
Y
Y

= + + q

L L
l

r
Q

e e e
i , 40r

r

z

z

with

( )= =
F

F- -L
R

R

r
L

z

1 d

d
,

1 d

d
, 41r z

1 1

where ( )R r and ( )F z define the unperturbed form of the
vortex. As a simple example, let us consider the case where
all the BdG modes propagate along the z-axis, as described by
the simple Wigner function ( ) ( ) ( ) ( )p d= ^W W kk k2 z0

2
0 . This

should not be confused with a laminar flow, and small
deviations with respect to the z-direction can be accommo-
dated. Equation (39) is then reduced to

( ) ( )
( )

( ) ò ò p w
= -

¶ ¶
W -

g

V
n

k W k

L v
r rd

d

2 i
. 42

V

z z

k z k

2

00
0

Let us now focus on the imaginary part of this energy
correction, ( ) ( )G = = WI I , which describes the possible
occurrence of an instability. We get

( ) ( )
( )

( )ò ò p
m
w m

G =
¶ ¶

G + +
g

V
n

k L W k

L v L
r rd

d

2
. 43

V

z z

k

z

z k z

2

00
0

2 2 2

For a nearly homogeneous condensate with ( )  =n nr etc00 0 ,
and for ( )m GL L v,z z k , this can be approximately written as

( ) ò òm p w
G

¶
¶

g n

V L

k W

k

rd d

2

1
. 44

V z

z

k z

2
0 0

And, using the Bogoliubov dispersion relation, we finally get

( ) ( ) ( ) ò òm w p
G

g n

V
c

L
W k

kr
r r,

d

2
d . 45s

z

k
z

z
2

0
2 0

This result clearly shows that, in the condensate regions
where turbulence is present, and if <L 0z , we have damping
of the vortex due to its interaction with the phonons. It means
that the phonons tend to gain energy. In contrast, if >L 0z ,
the vortex grows at the expense of the turbulence energy. In
both cases, the vortex will become unstable, and eventually
decay into other vortex solutions, with emission or absorption
of bogolons. The final result of the instability cannot be
described by the present linear stability analysis. Only in the
case of Lz = 0 can we strictly say that the vortex remains
stable in the presence of turbulence. This will be the case of a
vortex aligned with the z-axis.

But we can also consider vortices with finite curvature, as
those discussed in detail by [17, 18], and shown in figure 1. It
obviously has >L 0z for <z 0, and <L 0z for >z 0. We
can see from equation (45) that such a curved vortex will
remain stable if immersed in homogeneous turbulence, or
when the turbulence region is symmetrically located with
respect to the vortex line (figure 1(a)). And it will become

unstable under the action of asymmetric turbulence, as illu-
strated in figure 1(b). A variety of situations can therefore
occur where the value and sign of Γ will depend on the
configuration of the bogolon spectrum, as defined by

( )W kr, z0 , and on the way it occupies the vortex volume.
Many different configurations could lead to a non-uni-

form and local excitation of the turbulent field. In current
experiments on condensate turbulence [12], vortices usually
coexist with BdG type of oscillations. However, if we want to

Figure 1. Vortex with a finite curvature in a bogolon gas. The vortex
line is represented, as well as the condensate region occupied by
turbulence, with an integrated bogolon spectrum ( ) ( )=W Wr 00 0

[ ( ) ]s s- - - ^z z rexp 2 2z r0
2 2 2 2 , (with ( ) =W 0 10 in arbitrary units):

(a) stable configuration, z0 = 0 and s s = 2 ;z r (b) unstable
configuration, = -z 10 and s s = 1 2z r , when the bogolon gas
covers an asymmetric part of the vortex line.
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demonstrate the changes induced by the interactions between
vortices and turbulence, we need to compare the vortex
behavior with and without the oscillations. This cannot easily
be done in the experiments. Therefore, the easiest way to
study the evolution of a vortex in the presence of turbulence is
to start with numerical simulations, using realistic condensate
configurations. We can refer, for instance, to the excitation of
BdG modes by the supersonic flow of a condensate past an
obstacle [15]. A possible example could then be the study of
vortex stability, in the vicinity of a moving obstacle (see [16]
for a similar configuration). This is being considered by the
authors, and will be presented in a future work.

Finally, we would like to note that the vortex itself will be
forced to move due to existence of turbulence. Adapting the
analysis of [18] to the present problem, we can easily conclude
that the local velocity ( )v r of a vortex line in the presence of an
arbitrary bogolon distribution ( )W kr, z0 is given by

( )
∣ ∣
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Here R̂ represents the condensate dimensions in the perpend-
icular direction, and ξ is the healing length. This expression is
valid for a vortex with weak curvature, if we neglect the
confining potential. The evolution of a vortex in the bogolon
gas will eventually modify the present stability analysis.

It should also be noticed that the mechanism associated
with damping or amplification of vortices is not explicitly
described by the present perturbation method. The vortex
energy could eventually change due to a small variation of the
mean density in the vortex region, or a variation in curvature
and length of the vortex line. For a limited and non-uniform
condensate, displacement of the vortex to (or from) the
boundaries would also lead to an energy variation.

6. Conclusions

We have studied the vortex-phonon interactions in a Bose–
Einstein condensate. We have considered the case where a
single vortex interacts with an arbitrary spectrum of elementary
excitations, or BdG modes, which we have associated with a
bogolon field. Starting from a generic form of BdG equations,
we have derived a wave-kinetic equation which determines the
evolution of the bogolon field. The field is described by a
Wigner function, and can be seen as a gas of quasi-particles,
the bogolons, which correspond to phonons propagating in a
condensed quantum gas. Exact and approximate versions of the
wave-kinetic equation where stated. In the quasi-classical
approximation, the wave-kinetic equation reduces to a Vlasov-
type of equation, and the Wigner quasi-distribution reduces to a
classical distribution function.

Using perturbative analysis we were then able to derive
the growth rate of a vortex in the turbulent field, and

characterized the possible regimes where instability can
eventually take place. The present analysis shows that, in
general, a finite exchange of energy takes place between a
vortex and the surrounding oscillations, which could be useful
to future analysis of simulations and experiments. The present
stability analysis is valid in the geometric optics or quasi-
classical approximation, where the typical wavelength of the
bologons is much smaller than the size of the vortex. But the
same approach can be used for the general case, if instead of
the Vlasov equation we use the exact wave-kinetic equations
for the bogolon field. We have also brought attention to the
occurrence of vortex motion in the presence of turbulence,
which will eventually modify the vortex stability. The pos-
sible existence of stable vortex-bogolon configurations is a
very interesting but difficult problem, which will be analyzed
elsewhere.
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