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Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices
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Already a few bosons with contact interparticle interactions in small optical lattices feature a variety of quantum
phases: superfluid, Mott-insulator, and fermionized Tonks gases can be probed in such systems. To detect these
phases—pivotal for both experiment and theory—as well as their many-body properties we analyze several
distinct measures for the one-body and many-body Shannon information entropies. We exemplify the connection
of these entropies with spatial correlations in the many-body state by contrasting them to the Glauber normalized
correlation functions. To obtain the ground state for lattices with commensurate filling (i.e., an integer number
of particles per site) for the full range of repulsive interparticle interactions we utilize the multiconfigurational
time-dependent Hartree method for bosons (MCTDHB) in order to solve the many-boson Schrödinger equation.
We demonstrate that all emergent phases—the superfluid, the Mott insulator, and the fermionized gas can be
characterized equivalently by many-body entropy measures and by Glauber’s normalized correlation functions.
In sharp contrast, single-particle entropy cannot capture these phases.

DOI: 10.1103/PhysRevA.97.043625

I. INTRODUCTION

Ultracold atoms provide a testing ground for many-body
physics [1]. Utilizing Feshbach resonance management, the
interatomic interaction can be tuned to any desired value [2].
This tunability allows the production of weakly or strongly
correlated Bose-Einstein condensates (BECs). A variety of
different geometries and topologies is realizable by suitably
manipulating the magneto-optical trapping potentials [3]. For
instance, interacting bosons in optical lattices, that is, a spa-
tially periodic potential, have been shown to exhibit a quantum
phase transition from a superfluid state (SF) to a Mott insulator
(MI) [4–6].

One-dimensional optical lattices loaded with strongly in-
teracting bosons [7] have been shown to be experimentally
more challenging than their three-dimensional counterparts:
Quantum fluctuations are not negligible [8], trigger correla-
tions [9,10] and are the focus of the present paper.

The zero-temperature SF to MI transition is commonly
described by the Bose-Hubbard model [11]. For weak in-
terparticle interactions, a Bose gas in an optical lattice of
moderate depth is in the superfluid phase: The many-body
state features long-range coherence. This SF phase persists,
as long as the interatomic interaction is small compared
to the tunneling coupling—i.e., the parameter of the Bose-
Hubbard Hamiltonian that determines the lattice depth and
hence tunneling between neighboring sites. The SF can be
characterized as a state in which all particles are delocalized
between all sites of the lattice. When the repulsive interaction is
large compared to the tunneling coupling, each site is filled up

with an identical number of bosons and the coherence between
different sites is completely lost: The many-body state enters
the Mott-insulating phase.

Even though the Bose-Hubbard model can aptly describe
the above SF to MI transition in lattices, its regime of validity
is restricted to the case where site-localized Wannier states
are an appropriate basis set [12]. It has been demonstrated
that a general quantum many-body description, valid at all
interaction strengths, is necessary for the regime beyond the
Bose-Hubbard model [13,14]. One such theory is the multicon-
figurational time-dependent Hartree (MCTDH) method [15].
In Ref. [16] MCTDH was applied to small lattices and it was
found that correlations depend both on the commensurability
and the strength of the interparticle interactions. In the present
paper, we solve the full many-body Schrödinger equation at a
high level of accuracy by using the multiconfigurational time-
dependent Hartree method for bosons (MCTDHB) [17–19].
We note that MCTDHB has been applied to the dynamics of
ultracold bosons in multiwell traps successfully [20–25]. In
the following, we will use the open source implementation of
MCTDHB in the MCTDH-X software [26–29]. The motivation
for our present work is to investigate the pathway from the
superfluid through the Mott insulating to the fermionized phase
[30] and explain it in terms of production of many-body
information entropy.

Entropies of quantum systems were long ago introduced
[31–40] and used as a measure of the degree of order of a given
quantum state [41–46]. Entropy measures for many-body states
were shown to saturate in time to the values given by estimates
of Gaussian orthogonal ensembles (GOE) of random matrices
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for the time evolution triggered by an interaction quench [47].
This situation, when different entropy measures take on the
GOE values, is referred to as statistical relaxation and was
shown to also reflect itself in the correlation functions of the
many-body state [47].

Below, we analyze this connection of many-body entropies
and correlation functions for the quantum phases of many-body
states in an optical lattice, commensurately filled with bosons
that interact with a repulsive contact interaction. We character-
ize the many-body state by calculating the produced entropy
and the spatial correlations as a function of the interparticle
interaction strength. We demonstrate that the production of
different types of entropies—defined below— can be used to
identify the phase of the system.

We quantify the coherence properties of all the emergent
phases in one-dimensional lattices—superfluid, Mott insulator,
and fermionized phase—by computing Glauber’s normalized
first- and second-order correlation functions. We find that the
classification of phases using correlation functions agrees with
the classification of phases using many-body entropy mea-
sures. The fundamental relation between many-body entropies
and coherence properties in ultracold bosonic atoms, found
in Refs. [47,48] in the time evolution following a quench, is
extended to the present case of stationary states in lattices.

The paper is structured as follows. In Sec. II we expose
the Hamiltonian and introduce the many-body theory and our
quantities of interest: Glauber correlation functions and many-
body entropy measures. Section III deals with the results of our
analysis of ground states for various interaction parameters and
filling factors. We conclude our work in Sec. IV.

II. THEORY

A. Hamiltonian

Consider a system of N bosons interacting with a contact
interparticle interaction potential in one spatial dimension.
In dimensionless units, such a system is governed by the
following Hamiltonian:

H =
N∑

i=1

(
−1

2

∂2

∂x2
i

+ V (xi)

)
+ λ

N∑
i<j

δ(xi − xj ). (1)

Here, V (x) = V0 sin2(kx) is the lattice potential, where k = π
d

;
V0 is the depth and d is the periodicity of the lattice. The
strength of the two-body interactions λ can be experimentally
tuned almost at will in quasi-one-dimensional systems by ma-
nipulating the strength of the transversal confinement [49]. In
the remainder of the paper, we set a depth of V0 = 12.0 in order
to showcase all phases and in particular the fermionization
limit without the necessity to simulate an enormously large
interparticle interaction strength. Further, we set our grid to
range from xmin = −4.7124 ≈ − 3

2π to xmax = 4.7124 ≈ 3
2π

such that d = 3 wells are considered. The depth V0 is chosen
such that it allows superfluidity, for appropriately chosen boson
number N and interaction strength λ. We find the stationary
solutions of the many-body Schrödinger equation with periodic
boundary conditions and obtain the observables defined in
Sec. II C as a function of the strength of the interparticle
interactions λ and the number of atoms per lattice site.

B. MCTDHB

In the multiconfigurational time-dependent Hartree for
bosons (MCTDHB) approach, the wave function of the inter-
acting N -boson problem is expanded over a set of permanents.
Permanents are symmetrized bosonic states of N particles in
M single-particle states. Each permanent can be constructed by
acting products of N boson creation operators b

†
k (k = 1,...,M)

onto the vacuum |vac〉:
|�(t)〉 =

∑
�n

C�n(t)|�n; t〉; (2)

|�n; t〉 = |n1,n2,...nM ; t〉 =
M∏
i=1

[
(b†i (t))ni

√
ni!

]
|vac〉. (3)

Here, each operator b
†
k(t) creates a boson occupying the time-

dependent single-particle state (orbital) φk(x,t). The number
of possible configurations of N bosons in M orbitals is
equal to ( N+M−1

N
) and defines the number of complex-valued

coefficients C�n(t) in Eq. (2). A formal variational treatment
with the above ansatz leads to the MCTDHB equations of
motion [17–19]. The solution of the latter yields the time
evolution of the coefficients C�n(t) and orbitals φk(x,t) that built
up our solution: an approximation to the solution of the time-
dependent Schrödinger equation at a desired (arbitrary) degree
of accuracy Refs. [50–52]. We remark here that the formulation
of MCTDHB does at no point require the permanents |�n; t〉 to
be built up. The unfavorable scaling of the computation of the
permanent with the number of particles N is circumvented
because MCTDHB relies on second quantization.

In this work, we find the eigenstates of the Schrödinger
equation by propagating the MCTDHB equations in imaginary
time using the MCTDH-X package [26–28]. In the limit of
infinitely many orbitals, M → ∞, the set of permanents
|n1,n2, . . . nM ; t〉 in Eq. (3) spans the complete N -particle Fock
space and MCTDHB becomes exact [50–52].

C. Quantities of interest

We now introduce the quantities that we use to characterize
the solutions of the Schrödinger equation.

(a) Entropies. The Shannon information entropies
of the one-body density in coordinate space ρ(1)(x) =
〈�|�̂†(x)�̂(x)|�〉 is given by

Sx(t) = −
∫

dxρ(1)(x,t) ln[ρ(1)(x,t)]. (4)

Analogously, for the momentum density, ρ(1)(k) =
〈�|�̂†(k)�̂(k)|�〉 we have

Sk(t) = −
∫

dkρ(1)(k,t) ln[ρ(1)(k,t)]. (5)

The SIEs in Eqs. (4) and (5) are a measure of the delocalization
of the corresponding distributions ρ(1)(x) and ρ(1)(k).
References [41–43] establish a universal relation between
entropy and the number of interacting particles for diverse
systems like atoms, nuclei, and atomic clusters. Since
the distributions in Eqs. (4) and (5) are related to the
one-body density, they are insensitive to correlations that
may be present in the state |�〉 [29,48,53–64]. One can,
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however, formulate an SIE using the two-body density
distributions ρ(2)(x1,x2) = 〈�|�̂†(x1)�̂†(x2)�̂(x1)�̂(x2)|�〉
and ρ(2)(k1,k2) = 〈�|�̂†(k1)�̂†(k2)�̂(k1)�̂(k2)|�〉 (see
Ref. [65]):

Sρ−x(t) = −
∫

dx1dx2ρ
(2)(x1,x2; t) ln[ρ(2)(x1,x2; t)], (6)

and

Sρ−k(t) = −
∫

dk1dk2ρ
(2)(k1,k2; t) ln[ρ(2)(k1,k2; t)]. (7)

Here ρ(2)(x1,x2) [ρ(2)(k1,k2; t)] is the diagonal part of the two-
body reduced density matrix in position [momentum] space.
Since the SIEs in Eqs. (6) and (7) are computed from two-
body quantities, they are measures sensitive to correlations in
the many-body state |�〉. By comparing the SIE based on the
one-body density [Eqs. (4) and (5)] with the SIE based on the
two-body density [Eqs. (6) and (7)] the presence of correlations
in the state |�〉 can be inferred.

Since the state we consider is expanded in the MCTDHB
theory as |�〉 = ∑

�n C�n(t)|�n; t〉, we can define an alternative
SIE using the coefficients C�n that characterize the distribution
of the state |�〉 in the underlying Fock space [cf. Eq. (3)]:

Sc(t) = −
∑

�n
|C�n(t)|2 ln[|C�n(t)|2]. (8)

We term this entropy coefficient Shannon information entropy
(C-SIE), or simply coefficient entropy. A mean-field state
is a single-configuration state, i.e., only a single coefficient
contributes in Eq. (3). For such a state Sc(t) = 0 holds at
all t . Coefficient entropy Sc thus cannot be produced in a
mean-field theory. When the state |�〉 spreads across several
configurations |�n; t〉, several expansion coefficients contribute
[cf. Eq. (3)] and the coefficient entropy Sc gradually increases.
In the limiting case, when the complete N -body Fock space
is populated by the state |�〉, all coefficients are equally large
and Sc saturates to its maximal value.

Last, one can define an SIE measure related to the emer-
gence of fragmentation [37,47,48,53], i.e., the emergence
of multiple significant eigenvalues ni ; i = 1, . . . ,M of the
reduced one-body density matrix ρ(1) of the state |�〉 [66–68].
These eigenvalues are also referred to as natural occupations
and thus we term the following measure of entropy the
occupation Shannon information entropy (O-SIE):

Sn = −
M∑
i

ni ln ni. (9)

We remark that this definition of the entropy in the eigenvalues
of the reduced one-body density matrix has earlier been
developed and studied for fermionic systems [31–36].

In the case of bosons, for a state described by a single-orbital
mean-field theory, the reduced density matrix is characterized
by only a single eigenvalue and hence Sn = 0 holds. For
single-configuration states with multiple contributing orbitals
as well as multiconfigurational states, there may be several
occupation numbers and hence Sn 	= 0. For the condensed
gas only a single occupation dominates and the occupation
entropy is zero. For an increase in interaction strength, the
O-SIE gradually increases and saturates only for a maximally
fragmented state.

(b) Correlation functions. The normalized pth order corre-
lation function is defined by

g(p)(x ′
1,...,x

′
p,x1,...,xp) = ρ(p)(x1,...,xp|x ′

1,...,x
′
p)√∏p

i=1 ρ(1)(xi |xi)ρ(1)(x ′
i |x ′

i)
, (10)

and is the key quantity to define spatial pth order coher-
ence. Here, ρ(p)(x1,...,xp|x ′

1,...,x
′
p; t) is the pth order re-

duced density matrix of the state |�〉 [69]. In the case of
|g(p)(x1...,xp,x1...,xp; t)|>1 (<1), the detection probabilities
of p particles at positions x1,...,xp are referred to as (anti-
)correlated. Recent progress in experiments in quantum gases
has been remarkable and the measurement of higher-order
correlation functions is now possible [70–74]. In particular,
in Ref. [74] it has been explicitly shown how a many-body
system is characterized via its higher-order correlations.

III. RESULTS

In this section, we display our numerical results for the
SIE measures and spatial correlations in the eigenstates of
the Hamiltonian of Eq. (1) as a function of the strength
of repulsive interactions, λ. We choose three different sets of
system parameters representative for the three distinct phases
that the system may be in. Results for the superfluid phase, the
Mott insulating phase, and the fermionized phase are discussed
in the following Secs. III A, III B, and III C, respectively.

We define the filling factor as the ratio of the number of
atoms N and the number of lattice sites W : ν = N

W
. For the

entire manuscript we focus on commensurate filling factors
ν = 1,2, and 7. We keep the lattice depth V0 = 12.0 and the
number of lattice sites W = 3 fixed. We thus change the num-
ber of particles to change the filling factor and the interaction
strength is gradually tuned to cover all the emergent phases.
The transitions between the emergent phases are discriminated
using information entropies and correlation functions.

We choose to present the results in the order of increas-
ing complexity of the found many-body state: ν = 7,1,2 in
Secs. III A, III B, and III C, respectively. Indeed, we find that the
ν = 7 case is captured within a mean-field theory for the range
of the interparticle interaction strengths which we investigate.
The ν = 7 and ν = 1 cases can qualitatively be described
within the Bose-Hubbard model as there is no structure that
forms within sites. Notably, the fermionization that emerges for
the ν = 2 case at stronger interparticle interactions is a many-
body phase that neither of the aforementioned approaches can
describe.

A. Commensurate filling factor ν = 7: Superfluid state

Here, we characterize the superfluid phase using natural
occupations, normalized correlation functions, and the Shan-
non information entropy measures that we have introduced.
In Fig. 1(a), we plot the occupations as a function of the
interaction strengthλ. For relatively weak interactions, only the
first natural orbital is occupied and the population of the second
and third orbital remain below 10% for all values of λ < 0.01.

We use the criterion of Penrose and Onsager [66] to identify
Bose condensation by the eigenvalues of the reduced density
matrix: The system is a condensate if its reduced one-body
density matrix has a single macroscopic eigenvalue. From
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FIG. 1. Entropies and occupations in the superfluid phase. All
quantities are shown for ν = 7 and N = 21 bosons as a function
of the interaction strength λ. (a) Eigenvalues of the reduced density
matrix—the ground state is condensed and only a single eigenvalue
is macroscopic for the superfluid phase. (b) One-body SIEs Sx and
Sk , C-SIE Sc and O-SIE Sn. (c) Two-body SIEs Sρ−x and Sρ−k . All
quantities are dimensionless. See text for discussion.

Fig. 1(a) it follows that our ν = 7 state can be considered a
condensate for all the interaction strengths λ considered.

One can, thus, well approximate the many-body wave
function with a single-orbital mean-field state |N,0,...〉. To
achieve convergence in the occupations, i.e., the eigenvalues of
the reduced one-body density matrix the interaction strengths
that we consider, three orbitals [M = 3, cf. Eq. (3)] are enough;
adding more orbitals does not quantitatively change the many-
body state.

We plot the one-body SIE for the density and momentum
distributions as a function of the interaction strength λ in
Fig. 1(b). As λ gradually increases the (momentum) density
within each well is broadened (narrowed) and consequently the
SIE computed from the (momentum) density distribution, Sx

(Sk) [see Eqs. (4) and (5)] increases (decreases). In Fig. 1(b),
we also present the C-SIE Sc and O-SIE Sn. As anticipated,
the values of Sc and Sn are very close to zero, because the
condensate is phase coherent and can be well described by a
macroscopically occupied single-particle state and the Gross-
Pitaevskii mean-field equation yields a good description.

In Fig. 1(c), we plot the two-body SIE [Eqs. (6) and (7)].
The two-body SIEs behave similarly to the one-body entropy
measures. However, the rate of increase in Sρ−x is greater
than that in Sx and, likewise, the rate of decrease of Sρ−k

is greater than that in Sk . A similar trend was observed in
the calculation of one-electron and two-electron entropies in
Ref. [65]. The fact that the two-body density matrix can—
to a good approximation—be written as a product of one-
body densities for the coherent superfluid gas is a possible
explanation for this behavior.

In Fig. 2(a), we plot the absolute value of the normalized
first-order correlation function, |g(1)(x ′,x)|2 for λ = 0.01. We
see that in the (x,x ′) region where the density is localized
|g(1)|2 ≈ 1 holds. We infer that coherence within and between
sites is maintained. Figure 2(b) shows the two-body correlation
function g(2)(x ′,x,x ′,x) ≡ g(2)(x,x ′) for the same parameters
as in Fig. 2(a). We find g(2)(x,x ′) to be close to unity for all x ′,x.
Remarkably, second-order coherence between different wells
is perfectly maintained: g(2)(x,x ′) ≈ 1 for the off-diagonal
x ′ 	= x with |x ′ − x| larger than the size of a single well. The
diagonal part of the two-body correlation function is slightly
depleted, i.e., g(2)(x,x ′) � 1 for the diagonal x ′ ∼ x if |x ′ − x|
is smaller than the size of a single well. This signifies that
antibunching starts to develop for particles within the same
site due to the repulsive interactions: Second-order coherence
is locally decreased, even though the interaction strength λ is
relatively small.

B. Commensurate filling factor ν = 1: transition from
condensation to fragmentation

We now turn our attention to the Mott insulating phase
and investigate its many-body physics from the viewpoint
of correlation functions, coherence, and Shannon information
entropies. To obtain an archetypical Mott insulator for strong
interactions, we consider N = 3 bosons in three wells, i.e., a
single atom per site. To quantify the departure of the many-
body state |�〉 from a mean-field state in the superfluid-to-
Mott-insulator transition, we plot the expansion coefficients
|Cn|2 [Eq. (3)] as a function of the index n of the basis states for
two choices for the interaction strength: λ = 0.01 which puts
the system into a superfluid phase and λ = 10.0 that renders
it a Mott insulator [Figs. 3(a), 3(b)]. In the superfluid phase
(λ = 0.01) the number of significant coefficients is only a
small portion of the total number of configurations Nconf =
( N+M−1

N
). We refer to such a state as localized. We emphasize

that our use of the term “localized” refers to many-boson
Fock space and not real space; localized states are thus close
to a mean-field description where only a single coefficient
would contribute. However, as λ increases a larger amount
of coefficients become significant; we refer to such a state as
delocalized [cf. λ = 10.0 in Fig. 3(b)].

In Fig. 3(c), we plot the corresponding occupation of the
first, second, and third natural orbital as a function of the
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FIG. 2. (a) First- and (b) second-order normalized correlation
function for the superfluid phase, i.e., ν = 7,N = 21. The interaction
strength is λ = 0.01 while the rest of the parameters are as in Fig. 1. (a)
Complete first-order coherence is observed within each well; |g(1)| ≈ 1
for all x ≈ x ′. Significant interwell coherence can be inferred from
|g(1)| ∈ [0.5,1] for all x 	= x ′ on the off-diagonal. (b) Second-order
coherence is retained among distinct wells g(2)(x,x ′) ≈ 1 for all x ≈ x ′.
The fact that g(2) is maximal among distinct wells but drops within
each well indicates that the probability for detecting two particles in
different wells is higher than that of finding them in the same well.
This behavior is a consequence of the interparticle interactions and it
is termed antibunching. All quantities are dimensionless. See text for
discussion.

interaction strength. With an increase of λ, the occupation
of the first natural orbital gradually decreases while the oc-
cupations of the second and third natural orbitals gradually
increase. For large interactions, the first three natural occu-
pations saturate at 33.33%. In our computations with M = 6
orbitals, all but the first three orbitals had occupations smaller
than 10−7. Threefold fragmentation in a triple well indicates
loss of partial coherence of distinct sites and is a signature
for the transition to the insulating phase [76]. Thus, across
the superfluid-to-Mott-insulator transition the increase of the
interaction strength drives the state from a condensed to a
fragmented one. Generally, in the Mott-insulating phase there
are as many significant eigenvalues of the reduced density
matrix as there are lattice sites Ref. [77].

From Fig. 4(a) we see that the above transition cannot be
inferred from the density alone. Indeed, the densities as a

FIG. 3. Localization and delocalization in Fock space in the
superfluid-to-Mott-insulator transition at ν = 1,N = 3. The distri-
bution of the magnitude of the coefficients |Cn|2 as a function of the
index n for the superfluid at interaction strengthλ = 0.01 in (a) and the
Mott insulator at interaction strength λ = 10.0 in (b). The index n is
computed from the vector �n using the mapping described in Ref. [75].
In (a) the |N,0,...〉 coefficient and its neighbors dominate while all
others are small; the state is localized in many-body Fock space. At
(b) the larger interactions force the many-body state to spread over a
larger part of the available space and many coefficients are significant;
the state is delocalized in many-body Fock space. (c) Populations
of the first three natural orbitals. As λ increases, the occupation of
the first orbital gradually decreases while another two orbitals begin
to contribute (green and blue curves). Eventually the state becomes
threefold fragmented (n1 ≈ n2 ≈ n3 ≈ 1/3) at λ � 6.0. All quantities
are dimensionless.

function of λ before and after the transition are identical and
many-body measures, such as the entropies, are required to
identify the transition. Examining the C-SIE Sc and O-SIE
Sn we observe that for small λ both start at zero, as only
a single coefficient contributes to the the state, which is a
condensed superfluid [Fig. 4(b)]. The behavior of the SIE
measures computed from the one- and two-body density are
in mutual agreement with the C-SIE and O-SIE measures;
compare Figs. 3, 4(b), and 4(c). As λ rises, the C-SIE and
O-SIE measures increase and the many-body state converges
to a pure Mott insulator while fragmentation, as well as all SIE
measures saturate.

We shall now explore this saturation of entropies using
an analogous Gaussian orthogonal ensemble (GOE) [78]. A
comparison of MCTDHB results for the C-SIE Sc to the
entropies in a GOE can hint possible connections to random
matrix theory. We stress here that—in contrast to the other
entropy measures that we investigate in this work—the value
of the C-SIE Sc depends on the choice of the many-body basis
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FIG. 4. One-body density and entropies in the superfluid-to-Mott-
insulator transition at unit filling ν = 1 and N = 3 as a function of
the interaction strength. (a) The one-body density as a function of
interaction strength λ shows almost no variation in the transition from
a condensed superfluid to a fragmented Mott insulator. (b) Shannon
information entropy of the one-body (momentum) density Sx (Sk), the
occupation entropy Sn, and the coefficient entropy Sc all as a function
of λ. (c) SIE of the reduced two-body (momentum) density matrix
Sρ−x (Sρ−k). For the SIE measures in (b) and (c), the curved part for
weak interactions signifies the transition from a condensed superfluid
to a fragmented Mott insulator. Within the Mott-insulating phase, for
larger interaction strengths λ, all SIE measures saturate. All quantities
are dimensionless; see text for further discussion.

used to expand the wave function |�〉. The wave function
given by MCTDHB is invariant under unitary transformations
of the single-particle basis set {φk(x,t); k = 1,...,M} that may
change the absolute value of the coefficients |C�n(t)|2 [17,19]
and, hence, change the value of Sc. It would be of particular
interest to investigate whether a universal limit with a rigorous
connection to random matrix theory exists where the C-SIE Sc

is entirely independent of the chosen basis.
The GOE of random matrices can be formulated for isolated

quantum systems of interacting particles which exhibit time
reversal symmetry and rotational invariance [44–46]. The
entropies evaluated for the GOE provide estimates for the
entropies of many-body systems for the limiting case of
maximal disorder. The GOE of random matrices with infinite
interaction has entropy SGOE

c = ln(0.48Dc), where Dc × Dc is
the dimension of the considered random matrices.

In the present ν = 1 case, three bosons are distributed in
(essentially) three orbitals, Norb = 3 [Fig. 3(c)]. Hence, the
size of the GOE is Dc = ( N+Norb−1

N
) = 10 and thus one obtains

SGOE
c = 1.568. This is in excellent agreement with the value at

which our numerical result for the C-SIE Sc saturates: 1.552.
Despite the mentioned dependence of the coefficients C�n on the
choice of the many-body basis set, the coefficient entropy thus
saturates at the value predicted from the GOE for sufficiently
large λ. For the O-SIE Sn, the dimensionality of the GOE Dn =
3 is equal to the number of occupied orbitals in our MCTDHB
treatment and SGOE

n = −∑Dn

i=1
1

Dn
ln ( 1

Dn
) = ln(Dn) = 1.098.

Our numerical result for the saturated value of the O-SIE is
identical, Sn = 1.098 [79].

We now analyze the first-order and second-order coherence
in the fragmented Mott insulator for λ = 10.0 in Fig. 5. The di-
agonal of the first-order correlation function shows three com-
pletely separated coherent regions where |g(1)|2 ≈ 1; the
coherence of bosons within the same well is maintained while
it is lost between distinct wells, since |g(1)|2 ≈ 0 at the off-
diagonal, as expected for the fully localized particles in a Mott
insulator. Looking at g(2) we see that coherence is maintained
(g(2) ≈ 1) at the off-diagonal but not at the diagonal. The
vanishing diagonal part of the normalized two-body correlation
function—referred to as the correlation hole [16]—translates
to the fact that the probability of finding a double occupation
of a single well is practically zero. Second-order coherence
between wells is maintained, because the outcome of a two-
particle detection is almost always an uncorrelated detection
of two particles in distinct wells.

C. Commensurate filling factor ν = 2: from a condensed
superfluid via a fragmented Mott insulator to fermionization

We now consider a system with ν = 2 bosons per site and
characterize its phases using the density, normalized correla-
tion functions, and Shannon information entropy measures. In
lattices with commensurate filling factor larger than one, i.e.,
with more than one boson per site, two phase transitions can
be observed as a function of the strength of the interparticle
interactions λ: The superfluid-to-Mott-insulator transition, that
is also present if the filling factor is equal to one, emerges for in-
termediate interaction strengths. For large interaction strengths
the Mott-insulator-to-fermionization transition—absent for
ν = 1—now occurs. Since the physics of the superfluid-to-
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FIG. 5. First-order and second-order coherence of a fragmented
Mott insulator at ν = 1,N = 3. (a) The normalized first-order correla-
tion function |g(1)(x,x ′)|2 for λ = 10 exhibits three separated regions
with |g(1)|2 ≈ 1 along the diagonal and |g(1)|2 ≈ 0 on the off-diagonal.
Thus, the first-order coherence is maintained within wells and lost
between them. (b) The normalized second-order correlation function
g(2)(x,x ′) also for λ = 10. The “correlation hole” is clearly seen and
g(2) ≈ 0 holds for the diagonal x ≈ x ′; two particles are thus almost
never simultaneously found in the same well. Second-order coherence
g(2) ≈ 1 on the off-diagonal signifies that, in a measurement, two
uncorrelated particles will almost surely be detected in distinct wells.
The Mott-insulating phase is characterized by independent lattice sites
with strongly localized particles. All quantities are dimensionless.

Mott-insulator transition is unchanged, we focus here on the
Mott-insulator-to-fermionization transition. The pathway from
the condensed superfluid via the fragmented Mott insulator to
the fermionization regime depends on the shape of the trapping
potential [30]. The optical lattice with filling factor two is the
generic system for this transition to be studied.

Similarly to Sec. III B, we see that the system transitions to
MI at λ ≈ 10. The transition cannot be seen in the one-body
density, since the latter remains unchanged across the SF-to-MI
transition as λ increases [see Figs. 6(a) and 4(a)]. When
the interaction strength λ is sufficiently large (λ � 200), the
Mott-insulator-to-fermionization transition takes place and the
number of maxima in the one-body density becomes equal to
the number of bosons of the system; see Fig. 6(a). In this
case the bosonic density resembles a fermionic one where
Pauli exclusion forbids the spatial overlap of the particles. The

FIG. 6. One-body density and entropy measures for the transition
from the Mott insulator to fermionization. All panels are for ν =
2,N = 6 and are plotted against the interaction strength λ. (a) Plot of
the one-body density; the transition to fermionization is visible in the
formation of a two-hump intrawell structure—for large λ, the number
of peaks in the density is equal to the number of particles N . The
dashed contour line ρ(x) = 0.22 is drawn to visualize the two maxima
of each well. (b) SIE computed from the one-body (momentum)
density Sx (Sk), the coefficients entropy Sc, and the occupation entropy
Sn. (c) SIE computed from the two-body (momentum) density, Sρ−x

(Sρ−k). Compared to the system with a single boson per well, the SIE
measures saturate only for comparatively large interaction strengths
[compare (b) and (c) to Figs. 4(b) and 4(c), respectively]. All quantities
are dimensionless; see text for further discussion.
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FIG. 7. First- and second-order coherence for N = 6 fermionized
bosons and ν = 2. Both panels show normalized correlation functions
for an interaction strength λ = 200. (a) The normalized first-order
correlation function |g(1)(x,x ′)|2. The coherence between wells is
completely lost, i.e., |g(1)|2 ≈ 0 for the off-diagonal where x and
x ′ are positions in distinct wells. The fermionization of the system
is manifest in the loss of first-order coherence also within each of
the wells [cf. Fig. 5(a)]. (b) The normalized second-order correlation
function g(2)(x,x ′) has a fully developed correlation hole, |g(2)| ≈ 0 on
the diagonal. No bunching or antibunching is seen between particles
in distinct wells, i.e., g(2) ≈ 1 on the off-diagonal. Fermionization
is manifested in the emergent structures as long as x and x ′ are
positions in the same well [cf. Fig. 5(b)]. All quantities shown are
dimensionless; see text for further discussion.

transition to fermionization is thus manifest in the formation
of intrawell structure in the density. Such intrawell structures
cannot be appropriately described by the single-band Hubbard
model. When a complete set of Wannier states is considered in
each site, i.e., a multiband Hubbard model, an intractably large
number of bands quickly becomes necessary [14]. Thus, the
transition to fermionization is a hallmark for the inapplicability
of Hubbard models.

The SIE measures plotted in Figs. 6(b) and 6(c) as a
function of λ also saturate in the transition to fermionization.
The saturation of SIEs in the Mott-insulator-to-fermionization
transition with two bosons in each well, however, takes place
at a much larger interaction strength (λ ∼ 200) as compared
to the saturation of SIEs for the superfluid-to-Mott-insulator
transition (λ ∼ 10) in the case of ν = 1. Interestingly, no GOE

analog for the fermionized state has been established so far and,
consequently, we cannot provide a comparison of the values
to which the entropies shall saturate.

The Mott insulating and the fermionized phase are, in
principle, identified by the values of their entropies, as these
are not yet saturated before the intrawell structure develops in
the density [cf. Figs. 6(a)–6(c)]. We note that the many-body
entropy measures Sc,Sn,Sρ−x , and Sρ−k saturate to different
numerical values for the ν = 2 and the ν = 1 cases; compare
Figs. 6(b) and 6(c) and Figs. 4(b) and 4(c).

We plot the normalized one-body and two-body correlation
functions g(1) and g(2) to determine how the Mott-insulator-
to-fermionization transition reflects in the coherence of the
many-body state; see Fig. 7. The first- and second-order
coherence between different wells is similar for the fragmented
and the fermionized Mott insulator, i.e., the off-diagonal
parts of the normalized correlation functions g(1) and g(2) are
practically identical (cf. Figs. 5 and 7). However, in contrast
to the correlation functions of the fragmented Mott insulator
with a single boson per site, the correlation functions for the
fermionized Mott insulator feature a distinct intrawell structure
(cf. Figs. 5 and 7).

IV. CONCLUSIONS

We have shown that various information entropies can be
defined to reflect and quantify many-body properties of the
ground state of interacting bosons in one-dimensional lattices.
These entropies serve the dual purpose to (i) identify phase
transitions not seen in the single-particle properties of the
system and (ii) allow a connection to known results from
random matrix theory.

We demonstrated that the SIE measures are evidently in
agreement with predictions for specific Gaussian orthogonal
ensembles of random matrix theory for the MCTDHB results
for systems with strong interactions. For sufficiently strong
interactions and a single boson per site the system is fully in the
Mott insulating regime and all SIE measures saturate to their
respective GOE values. For sufficiently strong interactions
and two bosons per site the system is fermionized and the
SIE measures are saturated. For this case, however no GOE
estimation is available.

All the emergent phases—– the superfluid, the Mott-
insulator, and the fermionized state—are identified with a
distinct value of their SIE measures. Our analysis of the SIE
measures is complemented by an analysis of the density and the
spatial first- and second-order coherence. We showed that all
emergent phases have characteristic density, correlation, and
coherence patterns. We hence demonstrated that the superfluid,
and the Mott-insulating and the fermionized phases of bosons
in one-dimensional lattices are not only characterized uniquely
by their densities and Glauber normalized correlation func-
tions [69,80], but also by their SIE values. This corroborates
the fundamental connection between correlation functions and
entropy measures conjectured already in Refs. [47,48].

In the transition to fermionization, intrawell structure in the
densities and correlations of the many-body state is formed;
this marks the breakdown of the Hubbard model. Since the
SIE measures and Glauber normalized correlations allow one
to identify the fermionized state, we also demonstrated two
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independent ways to assess the applicability of a Hubbard
description.

Studying higher-order correlations and their “correlation
holes” would be a natural extension of our work. Moreover,
the crystal phase of dipolar bosons [77] and the relation of our
findings for the stationary states to quench dynamics are open
questions.
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