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Abstract
We consider two-dimensional (2D) localized vortical modes in the three-wave system with the
quadratic (χ (2)) nonlinearity, alias nondegenerate second-harmonic (SH)-generating system,
guided by the isotropic harmonic-oscillator (alias parabolic) confining potential. In addition to
the straightforward realization in optics, the system models mixed atomic-molecular Bose–
Einstein condensates. The main issue is stability of the vortex modes, which is investigated
through computation of instability growth rates for eigenmodes of small perturbations, and by
means of direct simulations. The threshold of parametric instability for single-color beams,
represented solely by the SH with zero vorticity, is found in an analytical form with the help of
the variational approximation. Trapped states with vorticities + −( 1, 1, 0) in the two fundamental-
frequency components and the SH one (the so-called hidden-vorticity modes) are completely
unstable. Also unstable are semi-vortices, with component vorticities (1, 0, 1). However, full
vortices, with charges (1, 1, 2), have a well-defined stability region. Unstable full vortices
feature regions of robust dynamical behavior, where they periodically split and recombine,
keeping their vortical content.

Keywords: vortex, second-harmonic-generation, parametric instability, azimutal instability,
quadratic nonlinearity

(Some figures may appear in colour only in the online journal)

1. Introduction

The fundamental significance of the quadratic (χ (2)) non-
linearity in optics, including its use for the creation of soli-
tons, is well known [1–5]. In particular, the χ (2) nonlinearity
opens the way to the making of two- and three-dimensional
(2D and 3D) solitons, because, unlike the Kerr (cubic) terms,
the quadratic ones, which couple the fundamental-frequency
(FF) and second-harmonic (SH) components of the optical
fields, do not give rise to the collapse in the 2D and 3D space
[8], which is a severe problem for multidimensional solitons
in Kerr media [4]. Stable (2+1)D beams propagating in
quadratically nonlinear optical media have been demonstrated
in the experiment [9], and stable spatiotemporal ‘light bullets’
have been predicted in these media too [10]. In the experi-
ment, fully self-trapped ‘bullets’ have not been reported yet,
the closest result being a spatiotemporal soliton self-trapped

in the longitudinal and one transverse directions, while the
confinement in the additional transverse direction was
imposed by the guiding structure[11, 12].

A challenging issue for the (2+1)D setting is the search
for conditions securing the stability of vortical solitons. In
contrast to their fundamental counterparts, vortex solitons
supported by the quadratic nonlinearity in the free space are
always unstable against azimuthal perturbations, which tend
to split the vortex into a set of separating fragments. For the
degenerate quadratic system, with a single FF component, the
splitting instability was predicted theoretically [14–17] and
demonstrated in the experiment [18]. The same instability
occurs in the framework of the full three-wave system, which
includes two distinct FF components, which represent
mutually orthogonal polarizations of light [19, 20].

Vortex solitons are also known as solutions of the 2D
nonlinear Schrö dinger (NLS) equation with the self-focusing
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cubic term [21]. They too are subject to the azimuthal
instability, which is actually stronger than the collapse
instability driven by the cubic nonlinearity [4]. The 2D NLS
equation models not only light beams in bulk media with the
Kerr nonlinearity, but also the mean-field dynamics of atomic
Bose–Einstein condensates (BECs), trapped in the form of
‘pancakes’ by the confining potential [22]; in the latter case, the
NLS equation is usually called the Gross–Pitaevskii (GP)
equation. In the context of the NLS/GP equation, a practically
relevant solution of the instability problem was elaborated:
both fundamental and vortical solitons, with topological charge
m = 0 and 1, respectively, can be stabilized by 2D harmonic-
oscillator (HO) confining potentials. It is well known [23–29]
that the HO potential renders the fundamental solitons stable,
against small perturbations, in the entire region of their exis-
tence. The vortices with m = 1, trapped by the same potential,
are stabilized in ≃33% of their existence region (in terms of
their norm). Additionally, an adjacent region of width ≃10%
supports a robust dynamical regime featuring periodic splitting
and recombination of the vortices, which keep their topological
charge [27]. As concerns the BEC realization, stabilization of
self-trapped semi-vortex (SV) modes in the free 2D space was
recently demonstrated in a two-component system with the
Kerr nonlinearity and linear spin-orbit coupling between the
components [30].

The effective 2D trapping potential can be also realized in
optical waveguides, in the form of the respective profile of the
transverse modulation of the local refractive index [5]. This
circumstance suggests a natural possibility for the stabilization
of (2+1)D vortex solitons in the χ (2) medium by means of the
radial HO potential. For the degenerate (two-wave) χ (2) sys-
tem, alias the type-I SH-generating interaction [1–3], this
possibility was demonstrated in [31], and then extended for 3D
spatiotemporal vortex solitons in [32]. The subject of the pre-
sent work is to investigate this stabilization mechanism for the
nondegenerate three-wave system, with the type-II quadratic
interaction, where the results demonstrate essentially new
features in comparison with the degenerate model.

A feasible approach to the making of the optical medium
combining a nearly-parabolic profile of the refractive index and
χ (2) nonlinearity is the use of a 2D photonic crystal, which can
be readily designed to emulate the required index profile, while
the quadratic nonlinearity may be provided by poled material
filling voids of the photonic-crystal matrix [6, 7]. In fact, the
effective radial potential provides for sufficiently strong loca-
lization of the trapped modes, therefore the exact parabolic
shape of the radial profile is not crucially important [31].

Essentially the same system of GP equations for atomic
and molecular wave functions models the BEC in atomic-
molecular mixtures [33–36]. In that case, two different com-
ponents of the atomic wave function pertain to two different
atomic states of the same species, while the quadratic non-
linearity accounts for reactions of the merger of two atoms into
a molecule, and splitting of the molecules due to collisions with
free atoms. Accordingly, the predicted mechanism of the sta-
bilization of three-component vortex solitons trapped in the HO
potential can also be realized in the BEC mixture.

The paper is organized as follows. The model, based on
the system of three propagation equation coupled by the χ (2)

terms, is introduced in section 2. In section 3, we introduce
four types of three-wave modes considered in this work: the
SH-only (single-color) one, with zero FF components; modes
with the hidden vorticity (HV, which means opposite vorti-
cities, = ±S 1, in the two FF components, and S = 0 in the
SH component); SVs, with S = 0 in one FF component and
S = 1 in the other one and in the SH wave (cf. the above-
mentioned SVs in the two-component system with the cubic
nonlinearity and linear spin-orbit coupling between the
components [30]); and, finally, full vortices, with S = 1 in
both FF components, and S = 2 in the SH. In section 4 we
report simple but nontrivial analytical results, which predict
the threshold of the parametric instability for the fundamental
and vortical single-color states by means of the variational
approximation (VA). In section 5 we formulate the eigenvalue
problem for small perturbations around stationary solutions,
which determines their stability. The numerical results for
modes of all the types are reported in section 6. First, we
identify the stability threshold for the fundamental and vor-
tical single-color trapped modes, and compare these results
with the above-mentioned analytical predictions provided by
the VA. Next, the results are summarized for the HV and SV
modes, which are found to be unstable. Finally, the stability
region is presented for the most general three-wave states,
with vorticities 1 in both FF components and 2 in the SH. In
addition, unstable vortices may exist in a quasi-stable dyna-
mical regime, in the form of periodic splitting and recombi-
nation of the SV. The paper is concluded by section 7.

2. The model

The copropagation of two components of the FF wave, with
amplitudes u x y z( , , ) and v x y z( , , ), and the SH wave, with
amplitude w x z( , ), in the bulk χ (2) waveguide obeys the
system of three coupled equations written here in the nor-
malized form [2, 3]:

 Ω= − + + +iu u v w r u Qu
1

2
* 1

2
, (1)z

2 2 2

 Ω= − + + −iv v u w r v Qv
1

2
* 1

2
, (2)z

2 2 2

 Ω= − − + +iw w qw uv r w2
1

2
2 , (3)z

2 2 2

where  ≡ ∂ ∂ + ∂ ∂x y2 2 2 2 2 is the transverse diffraction
operator, the asterisk stands for the complex conjugate, Q is
the birefringence coefficient, q is the FF-SH phase mismatch,
and Ω2 the strength of the HO trapping potential. In the most
general case, stationary vortex solutions of this system, with
two independent FF propagation constants ku and kv, can be
looked for as

= θ θ+ +{ }u v U r V r{ , } ( )e , ( )e , (4)S k z S k z
0

i i
0

i iu u v v

= + + +w W r( )e , (5)( ) ( )S S k k z
0

i iu v u v

2
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where Su and Sv are integer vorticities of the two FF
components, and U r( )0 , V r( )0 , and W r( )0 are real radial
functions with asymptotic forms

Ω

Ω

∼

→ ∼ −

∼ − → ∞

+

( )

{ }

{ }

{ }U r V r W r r

r U r V r r

W r r r

( ), ( ), ( )

at 0, ( ), ( ) exp
2

,

( ) exp at . (6)

S S S S
0 0 0

, ,

0 0
2

0
2

u v u v

⎜ ⎟⎛
⎝

⎞
⎠

The exact equality of the propagation constant and vorticity of
the SH component in equations (4) and (5) to sums of the
same constants of the FF components is imposed by the
coherent coupling between the FF and SH components in
equations (1)–(3).

In this work, the analysis is carried out, chiefly, for Q = 0,
in which case the symmetry between the two FF components
suggests to consider three-wave states with =k ku v. For

≠Q 0, rescaling of equations (1) and (2) makes it possible to
fix Q = 1. Families of three-wave vortices with =Q 1 are
considered too, at the end of the paper.

Equations (1)–(3) can be derived from the Lagrangian,

∫ ∫= − + −

+ − −

{
}

( ) ( )
( )

L
i

uu u u i vv v v

ww w w x y H

2
* *

2 * d d , (7)

z z z z

z z

* *

*

⎡
⎣⎢

⎤
⎦⎥

where the Hamiltonian is

  ∫ ∫
Ω

= + +

+ + +

+ − − + +( )

( )

( )

( )

H u u w

r u v w

Q u v q w uvw u v w x y

1

2
1

2
4

* * * d d . (8)

2 2 2

2 2 2 2 2

2 2 2

⎡
⎣⎢

⎤
⎦⎥

The Hamiltonian is the dynamical invariant of
equations (1)–(3), along with the total power (field norm),

∫ ∫= + +

≡ + +
( )N u v w x y

N N N

4 d d

, (9)u v w

2 2 2

and the total angular momentum,

∫ ∫= − + −

+ −

M i u yu xu v yv xv

w yw xw x y

*( ) *( )

2 *( ) d d , (10)

x y x y

x y

⎡⎣
⎤⎦

which is a real integral quantity, even if it formally seems
complex. (This can be checked by means of the integration by

parts that the ≡M M* .)

3. Stationary solutions

3.1. Single-color (SH) states

The simplest stationary state in the present model is the one
with unexcited FF components, i.e., = =U V 00 0 in

equation (4) and W r( )0 from equation (5) obeying the linear
equation, which follows from equation (3) ):

Ω

− + =

− ″ + ′ − +

k q W

W
r

W
S

r
r W

( 4 )

1

2

1
2 , (11)w

0

0 0

2

2
2 2

0

⎛
⎝⎜

⎞
⎠⎟

where Sw replaces +( )S Su v , see equation (5). This equation
is tantamount to the radial Schrödinger equation for 2D
quantum-mechanical states with azimuthal quantum number S
in the HO potential. The respective solutions to equation (11)
are

Ω= −( )W Br rexp , (12)S
0

2w

Ω= − + +( )k S q1 2 4, (13)w

where B is an arbitrary constant. The norm (9) of this state is

π

Ω
=

+
N

S
B

4 !

(2 )
. (14)

w

S
SH

1

2

w

3.2. HV states

Solutions for 2D HV modes are defined by the vorticity set
≡ + = + −( )S S S S S, , ( 1, 1, 0)u v w u v of the three components

in equations (4) and (5). Accordingly, the solutions are looked
for as

= θ θ−{ }u v U r V r{ , } ( )e , ( )e e , (15)S S kz
0

i
0

i i

=w W r( )e , (16)kz
0

2i

where real functions U ,0 V ,0 and W0 satisfy the following
radial equations (where the birefringence terms are kept, for
the time being):

Ω

− = − ″ + ′ −

+ + +

kU U
r

U
S

r
U

V W r U QU

1

2

1

1

2
, (17)

0 0 0

2

2 0

0 0
2 2

0 0

⎛
⎝⎜

⎞
⎠⎟

Ω

− = − ″ + ′−

+ + −

kV V
r

V
S

r
V

U W r V QV

1

2

1

1

2
, (18)

0 0 0

2

2 0

0 0
2 2

0 0

⎛
⎝⎜

⎞
⎠⎟

Ω

− = − ″ + ′ −

+ +

kW W
r

W qW

U V r W

4
1

2

1

2 . (19)

0 0 0 0

0 0
2 2

0

⎜ ⎟⎛
⎝

⎞
⎠

Previously, the HV concept was realized for the three-
wave χ (2) system in the free space [37], as well as for various
systems of coupled continuous [38–41] and discrete [42, 43]
NLS/GP equations with the cubic nonlinearity, including the
system supported by the HO trapping potential [41]. In work
[44], it was demonstrated that the HV essentially suppresses
the modulational instability of 2D ring solitons in a two-
component system with saturable nonlinearity, in comparison
with their counterparts carrying explicit vorticity. However,

3
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trapped vortical modes with HV were not previously studied
in three-wave systems.

3.3. Semi-vortices

The other type of the vortical mode, with zero vorticity in one
FF component (hence they are called SVs, as said above), is
defined by the set of =( )S S S, , (1, 0, 1)u v w , i.e., solution
ansatz (4), (5) reduces to

= θ+{ }u v U r V r{ , } ( )e , ( )e , (20)k z k z
0

i i
0

i1 2

= θ+ +w W r( )e , (21)( )k k z
0

i i 1 2

where the real radial amplitudes obey the following equations,
see equations (17)–(19):

Ω

Ω

Ω

− = − ″ + ″ −

+ + +

− = − ″ + ″

+ + −

− + = − ″ + ′ −

− + +

( )

k U U
r

U
r

U

V W r U QU

k V V
r

V

U W r V QV

k k W W
r

W
r

W

qW U V r W

1

2

1 1

1

2
,

1

2

1

1

2
,

2
1

2

1 1

2 . (22)

1 0 0 0 2 0

0 0
2 2

0 0

2 0 0 0

0 0
2 2

0 0

1 2 0 0 0 2 0

0 0 0
2 2

0

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

In the limit of small amplitudes, solutions of the linearized
version of equation (22) can be found in the form of

Ω

Ω

Ω

= −

= −

= −

( )
( )
( )

U U r r

V W r

W W r r

exp 2 ,

exp 2 ,

exp , (23)

0 0
(0) 2

0 0
(0) 2

0 0
(0) 2

where the propagation constant must satisfy, respectively, the
following relations for the components U V W, , :

Ω
Ω

Ω

= − −
= − +

+ = − +

k Q

k Q

k k q

2 ,
,

2 2. (24)

1

2

1 2

From equation (24) it follows that, in the small-amplitude
limit, the SV mode exists at the single value of the mismatch,

Ω= −q 2 . Below, it is shown that solutions for nonlinear SV
modes lift this constraint.

3.4. Full vortices

In fact, the HV modes and SVs are shown below to be
completely unstable (modes of the latter type may be replaced
by robust dynamical states which keep the same vortical
structure). A stationary topological state which features a
well-defined stability region is the full vortex, with the set of

=( )S S S, , (1, 1, 2)u v w in equations (4) and (5). The respec-
tive system of stationary equations is (see equations (17)–(19)

and (22)):

Ω

Ω

Ω

− = − ″ + ′ −

+ + +

− = − ″ + ′ −

+ + −

− + = − + ′

− − + +

′′( )

k U U
r

U
r

U

V W r U QU

k V V
r

V
r

V

U W r V QV

k k W W
r

W

r
W qW U V r W

1

2

1 1

1

2
,

1

2

1 1

1

2
,

2
1

2

1

4
2 . (25)

1 0 0 0 2 0

0 0
2 2

0 0

2 0 0 0 2 0

0 0
2 2

0 0

1 2 0 0 0

2 0 0 0 0
2 2

0

⎜ ⎟

⎜ ⎟

⎟

⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

4. The VA for the onset of the parametric instability
of the single-color modes

The VA is a natural approach for predicting the shape of
nonlinear modes, including vortical ones supported by the
χ (2) nonlinearity [30, 31]. In the present context, the VA can
be used for the prediction of the instability threshold of the
trapped single-color (SH-only) states (the VA may be
developed for other situations too, but it then turns out to be
rather cumbersome).

For this purpose, it is necessary to consider a perturbed
version of the single-color stationary state, which includes the
FF components too. In particular, in the case of zero vorticity
of the SH component and vorticities ±S of the FF perturba-
tions, the Lagrangian of the respective stationary
equations (17)–(19) can be reduced to its radial part:

∫

Ω

=

+ + + +

+ + + + +

+ + −

− +

∞

( )

( ) (
) ( )

}

L r r
U

r

V

r

W

r

S

r
U V

k U V W r U V

W Q U V

qW U V W

d
1

2

d

d

d

d

d

d

4
1

2

4

2 . (26)

rad
0

0
2

0
2

0
2 2

2 0
2

0
2

0
2

0
2

0
2 2 2

0
2

0
2

0
2

0
2

0
2

0
2

0 0 0

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

To develop the VA, the simplest Gaussian ansatz may be
adopted, assuming equal amplitudes (A) and widths of fields
U0 and V0:

Ω

Ω

= = −

= −

( )
( )

U r V r Ar r

W r B r

( ) ( ) exp 2 ,

( ) exp (27)

S
0 0

2

0
2

( ⩾S 0 is defined here). The symmetry between the
FF components implies that we should set Q = 0, otherwise
the symmetry will be broken by the birefringence. Setting
Q = 0 limits the consideration to a particular case of the
generic three-wave system, but even this particular case is a

4
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nontrivial one, as it has no counterpart in the usually
considered degenerate two-wave system, in which the VA
was applied before to the description of trapped vortices [31].
The widths of all the components in ansatz (27) are not treated
as variational parameters, but are rather taken as per wave
functions of states trapped in the 2D HO potential, see
equation (12).

The objective of the use of the VA in the present context
is to predict a point at which a solution with an infinitely
small A appears, against the background of the fundamental
single-color (SH-only) state, given by equations (12) and (13)
with =S 0w and arbitrary amplitude B. The appearance of this
mode signals the onset of the parametric instability of the
latter state [31]. The substitution of ansatz (27) into radial
Lagrangian (26) yields the following reduced Lagrangian, in
which we drop terms that produce no contribution in the
subsequent analysis:

Ω Ω Ω
= + + + − +L S

A
S

k B
! 1 2 . (28)

S
S

rad

2
(1 )⎡

⎣⎢
⎤
⎦⎥

This Lagrangian gives rise to the Euler–Lagrange equation,
∂ ∂ =( )L A 0rad

2 . The parametric-instability threshold, corre-
sponding to the emergence of the solution with an
infinitesimal >A 02 , corresponds to setting =A 02 in the
resulting equation:

Ω

Ω

= − + +

= − + +

+

+

B S k

S
q

2 [(1 ) ]

2
1

2 4
, (29)

S

S

1

1 ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

where expression (13) was substituted for k. The respective
critical total power (norm) of the trapped single-color state is
given by equation (14),

π
Ω

Ω= + ++N S
q

2 (1 2 )
2

. (30)c
S1 2

2⎡
⎣⎢

⎤
⎦⎥

Thus, the fundamental single-color state is stable at <N Nc,
and unstable at >N Nc.

Note that, as it follows from equation (30), the parametric
instability of the zero-vorticity single-color state is dominated
by the vortical FF perturbations with S = 1 (i.e., S = 1 give rise
to Nc lower than its counterpart produced by the zero-vorticity
perturbations, with S = 0) in an interval of negative values of
the mismatch, Ω Ω< − <q(14 3) 10 .

It is also relevant to develop a similar analysis for the
onset of the parametric instability of the vortical single-color
trapped state with even vorticity >S 0w , for which

Ω= −( )W r Br r( ) expS
0

2w , see equation (12), and S is
replaced by S 2w in the FF components of ansatz (27). In this
case, the reduced radial Lagrangian (28) is replaced by

Ω

Ω Ω

=

× + + +
+

( )L S
A

S k
S

A B

2 !

1
2

!
(2 )

. (31)

( )
w S

w
w S

rad
S

2

2

2

1

w

w

w

⎛
⎝⎜

⎞
⎠⎟

Then, the Euler–Lagrange equation, ∂ ∂ =( )L A 0( )
rad

S 2w , yields
the value of amplitude B, the substitution of which into
expression (14) gives the instability threshold for the single-
color vortex mode:

π
Ω

Ω= ++ ( )
N

S

S

q
2

2 !

! 2
. (32)( )

c
S S w

w

1

2
2

w w ⎜ ⎟
⎡⎣ ⎤⎦ ⎛

⎝
⎞
⎠

The analytical predictions (30) and (32) produced by the
VA are compared to numerical findings below, see figure 1.

5. Linearized equations for small perturbations

The stability of the modes under the consideration is the
central issue of the present work. It is addressed via

Figure 1. Left: numerically found critical powers, Nc, of the single-color (SH-only) states, with vorticities =S 0, 1, 2w , beyond which the
states become unstable against the excitation of the FF. For =S 0w and 2, the analytical results, produced by the variational approximation
(see equations (30) with S = 0 and (32) with =S 2w ), are displayed too. Right: the evolution of integral powers of fields u v, and w for a
perturbed unstable state with =S 0w , q = 0, and total power N = 7.6. In both panels here, and in figures following below, numerical results are
presented for Ω = 1 and Q = 0 (zero birefringence between the FF components, except for figure 15).
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computation of eigenvalues for small perturbations. In the
general case, perturbed solutions are introduced as

ε ε

ε ε

ε ε

= + +

= + +

= + +

λ λ

λ λ

λ λ

u z u u u

v z v v v

w z w w w

r r r r

r r r r

r r r r

( , ) e ( ) e ( ) e ˜ ( ) ,

( , ) e ( ) e ( ) e ˜ ( ) ,

( , ) e ( ) e ( ) e ˜ ( ) , (33)
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where k is the propagation constant of the stationary solution
(assuming here that k is the same for that both FF
components), which is represented by (complex) functions
u vr r( ), ( ),0 0 w r( )0 , infinitely small ε is an amplitude of the
perturbation, λ is the instability growth rate sought for, which
is, generally, complex too [the instability takes place if there
exists, as usual, at least single λ with λ >Re ( ) 0], the asterisk
stands for the complex conjugate, and u ur r( ), ˜ ( ),1 1

v vr r( ), ˜ ( ),1 1 w wr r( ), ˜ ( )1 1 are components of the perturbation
eigenmode, which obey the system of linearized equations:
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For the unperturbed solution taken as per equations (15)
and (16), it is easy to see that equation (34) admit self-con-
sistent perturbation modes in the following form:
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where p is an arbitrary integer (azimuthal index of the
perturbation). The substitution of expressions (35) into
equation (34) leads to the following eigenvalue system which
should determine λ for each integer p:
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Solutions U U V V, ˜ , , ˜1 1 1 1 of equation (36) must exponentially
decay at → ∞r , and behave as ∣ ± ∣r p Su v, at →r 0, and W W, ˜1 1

must exponentially decay too at → ∞r , and go as ∣ ± + ∣( )r p S Su v

at →r 0, see equation(6).

6

J. Opt. 17 (2015) 045503 A Gammal and B A Malomed



6. The stability of the single-color modes

First, we address the stability of the SH-only vortex, which is
given by equations (12) and (13), against small perturbations

seeded in the FF components, which are taken as

ε

ε

=

=

λ θ

λ θ

+

+ −

u z u r

v z v r

r

r

( , ) e ( )e ,

( , ) e ( )e , (37)( )*

kz z p

kz z S p

i
1

i

i
1
* i w

Figure 2. Development of the instability of the single-color (SH) mode (12), for =S 1w , Q = 0, Ω = 1, B = 2, π=N 4 . Initial random
perturbations in the FF components, u and v , are loaded with an amplitude < −10 4. The top, middle, and bottom panels display the evolution
of densities of the u, v (FF) and w (SH) fields, respectively.

Figure 3.Overall characteristics of the instability displayed in figure 2. Left: the evolution of the integral powers of the FF components, u and
v. Right: the integral angular momentum of each component, see equation (10).
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Figure 4. Left: the propagation constant versus the total power for the hidden-vorticity family with vorticities = + −S ( 1, 1, 0)u v w, , , Ω = 1,
= =Q q 0. Right: stability eigenvalues produced by linearized equations (36). The corresponding values of the perturbation azimuthal index

p are attached to the curves.

Figure 5. The same as in figure 4, but for = −q 4.

Figure 6. The evolution of the component, u, of an unstable hidden-vorticity mode with = −q 4, norms =N 25.1u v, , =N 52.8w (the total
power is N = 103) and = −k 1. Density distributions are displayed for values of the propagation distance indicated above the respective
panels.

8

J. Opt. 17 (2015) 045503 A Gammal and B A Malomed



according to equations (33) and (35). The perturbation
eigenfunctions, u r( )1 and v r( )1 , satisfy the following
linearized equations, which are a particular case of
equation (36):

λ

Ω

λ

Ω

− − = − + −

+ +

− − + = − + −
−

+ +

Ω

Ω

−

−

( )

i k Q u
r r r

P

r
u

Br v r u

i k Q v
r r r

S P

r
v

Br u r v

( )
1

2

d

d

1 d

d

e
1

2
,

( )
1

2

d

d

1 d

d

e
1

2
.

S r

w

S r

1

2

2

2

2 1

1
2 2

1

1

2

2

2

2 1

1
2 2

1

w

w

2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

The objective is to find, for given Sw, a critical (mini-
mum) value of amplitude B in solution (6), and, accordingly,
the minimum value of the integral power (14), at which
equation (6) starts to produce eigenvalues with λ ≠Re ( ) 0,
i.e., the single-color mode becomes unstable against the FF
perturbations. Then, we aim to explore the evolution of
unstable modes by means of direct simulations. To address
these problems, we employed numerical techniques and grids

similar to those used in [41] for finding the eigenvalues and
running direct simulations.

The results for trapped single-color (SH-only) modes are
collected in the left panel of figure 1, while the right panel
illustrates the evolution of an unstable mode with =S 0w , in
terms of the power exchange between the three components
(the total power is conserved, as it should be). Here and
below, numerical results are displayed for the zero birefrin-
gence (Q = 0, unless it is specified otherwise) and trapping-
potential strength Ω = 1.

The left panel of figure 1 demonstrates that the VA-
predicted instability thresholds (30) and (32) approximate
their numerically found counterparts well enough. In parti-
cular, the VA exactly predicts that (for Ω = 1 and Q = 0), the
instability threshold vanishes ( =N 0c ) at = −q 2.

It is interesting to consider the (in)stability of the single-
color trapped vortices with =S 1w and other odd values of the
vorticity, as the respective perturbations in the two FF com-
ponents cannot be arranged symmetrically, unlike those
considered above for even values of Sw. The threshold value
of the norm for =S 1w is shown in the left panel of figure 1,
and the development of the respective instability is illustrated
by figures 2 and 3 . It can be concluded that the instability

Figure 7. The same as in figure 6, but for = −q 4 and =N 340u v, , =N 480w , the total power is N = 1160, and k = 2.

Figure 8. Left: relations between the propagation constant and integral powers of the three fields for semi-vortices of the type of
=S (1, 0, 1)u v w, , , with Ω = 1, =Q 0, q = 0. Right: the largest real parts of stability eigenvalues for the semi-vortices, as obtained from the

numerical solution of equation (36). Integers p are azimuthal indices of the destabilizing perturbation eigenmodes.
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does not destroy the vorticity (topological charge) of the SH
component, while the SH and FF waves exchange their
angular momenta, keeping virtually equal integral powers.

7. Numerical results for three-wave vortices

7.1. HV modes with Su,v,w = (+1, −1, 0)

Families of HV states, defined as per equations (15) and (16),
are characterized by dependences between the propagation
constant and integral powers of the two FF components and
the SH one, see equation (9). Typical examples of such
dependences, obtained from a numerical solution of
equations (17)–(19), are shown in the left panels of figures 4
and 5, respectively, for positive ( ⩾q 0) and negative ( <q 0)
values of the phase mismatch.

The computation of the stability eigenvalues by means of
equation (36) demonstrates, in the right panels of figures 4
and 5, that all the HV modes are subject to instability against
small perturbations with various values of azimuthal index p.

Direct simulations reveal two different scenarios of the
instability development, which are displayed in figures 6 and
7. In the former case, the central core is spontaneously
expelled from the vortex ring, which tends to transform itself
into a fundamental mode. In the latter case, the vortex ring
splits into two fragments, which is a typical outcome of the
instability development of vortices in models with the cubic
nonlinearity [25–28].

7.2. SVs with Su,v,w = (1, 0, 1)

For families of SV solutions, a numerical solution of
equation (22) produces dependences between the propagation
constant and integral powers of the three components, a
typical example of which is displayed in figure 8. It is con-
cluded that these families are completely unstable too.

Simulations of the instability development of the SVs
reveal two basic outcomes which initially look similar to
those shown above for the HV modes, see figures 6 and 7,
i.e., expulsion of the central core from the vortex ring, as

Figure 9. The evolution of the densities of the u v w, , fields in an unstable semi-vortex corresponding to = −k 0.5 in figure 8.
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Figure 10. The same as in figure 9, but for an unstable vortex ring corresponding to k = 1.

Figure 11. Left: the relation between the propagation constant and integral powers of the three components in three-wave vortices with
=S (1, 1, 2)u v w, , , Ω = 1, = =Q q0, 0. Solid and dashed lines represent stable and unstable states, respectively. The transition from the

single-color state (the emergence of the FF components) occurs at =N 11.8w . The destabilization takes place at = −k 1.16, =N 12.5u v, ,
=N 32.0w , the total power being 57.0. Right: instability eigenvalues with the largest real part, as found from the numerical solution of

linearized equations (36).
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shown in figure 9, or splitting of the vortex into a set of two
fragments, see figure 10.

7.3. Full three-wave vortices

The most general three-wave vortex state is built with
=S (1, 1, 2)u v w, , . Families of these solutions were found for

the symmetric system, with Q = 0 and = ≡k k ku v (see
equations (4) and (5)) from a numerical solution of
equation (25). Their stability eigenvalues were then computed
using equation (36), and the predicted stability or instability
was verified by direct simulations of equations (1)–(3).

A crucial difference of the three-wave vortices from the
single-color (SH-only), HV and SV states, which were con-
sidered above, is that the full vortices have a well-defined
stability area. A typical vortex family and its stability are
presented in figure 11. This figure explicitly displays both the
bifurcation, which generates the full vortex from the corre-
sponding single-color state, with =S 2w (as shown above, the
bifurcation simultaneously destabilizes the single-color state),
and the point of the destabilization of the three-wave vortices.

The results of the stability analysis are summarized, in
the plane of the phase-mismatch parameter, q, and total
power, N, in figure 12. The shape of the stability diagram is

Figure 12. Left: the stability diagram for vortices with =S (1, 1, 2)u v w, , , Ω = 1, Q = 0, in the plane of the mismatch parameter (q) and total
power (N). Right: the same, on the logarithmic scale of N. In this panel, dominant values of the perturbation azimuthal index are displayed in
the region of the splitting instability (label ‘only’ implies that there is a single instability eigenmode in the respective area).

Figure 13. The evolution of the densities of the u v w, , fields in the regime of periodic splittings and recombinations of the three-wave vortex,
with =S (1, 1, 2)u v w, , , Ω = 1, = =Q q0, 0, = −k 1, =N 21.4u v, , =N 44.4w , the total power being N = 87.2.
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qualitatively similar to the one which was recently reported,
for the degenerate two-wave χ (2) system, in [31] (for the sake
of the comparison, note that q was defined with the opposite
sign in [31]). The bottom-right area in the diagram is popu-
lated by the single-color (SH-only) vortices with =S 2w , the
bifurcation destabilizing the single-color vortex and replacing
it by the three-wave one occurring along the upper boundary
of this area.

In the ‘splitting’ area labeled in figure 12, the three-wave
vortices are subject to an instability which splits them into a
set of fragments, the number of which is equal to the domi-
nant (or single) azimuthal index, p, of unstable perturbation

modes, which is indicated in the right panel of the figure.
Further, in the region labeled ‘p = 2 (only)’, the stable static
three-wave vortices are replaced by a robust dynamical
regime, in the form of periodic splittings of the vortex into
two segments and their recombinations, as shown in
figure 13. In the course of this periodic evolution, the vortical
structure of the mode is conserved. A similar dynamical
regime, in the form of periodic splittings and recombinations,
is known in the 2D GP equation with the cubic self-attractive
nonlinearity and HO trapping potential [27]. On the other
hand, the instability-induced splitting the vortex into a set of
three fragments is irreversible, as shown in figure 14.

Figure 14. An example of the irreversible splitting of the three-wave vortex with =S (1, 1, 2)u v w, , . Top: the evolution of densities of the FF
fields, u and v, for Ω = 1, = =Q q0, 0, k = 10, =N 1800u v, , =N 2142w , the total power being =N 5741. Bottom: the same but for the SH
field, w.

Figure 15. The same as in the right panel of figure 11, but with Q = 1 in equations (1) and (2).
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Finally, the effect of the birefringence of the stability of
the three-wave vortices, represented by Q = 1 in equations (1)
and (2), was briefly considered too. As shown in figure 15, the
birefringence terms make the stability area somewhat larger.
This result can be explained by the fact that the birefringence
renders the system less coherent, while the splitting instability
of the vortices is a result of highly coherent χ (2) interactions.

8. Conclusion

This work aimed to explore the possibility of the stabilization
of various 2D three-wave modes supported by the χ (2)

interactions in the combination with the isotropic HO trapping
potential. The existence and stability of the modes is deter-
mined by powers and vorticities of the three components and
the mismatch of the χ (2) system (q). First, using both
numerical computations and the VA , stability boundaries
were identified for the fundamental (zero-vorticity) and vor-
tical single-color states, in which only the SH component is
present. On the contrary to the usual assumption that the
single-color SH modes are subject to the parametric instability
against perturbations in the FF (fundamental-frequency)
fields, we have found that they are stable below the respective
critical values of the total power. Next, HV and SV states,
with vorticities, respectively, ±1 or 1 and 0 in the two FF
components, were found to be always unstable. The stability
region has been identified for the full three-wave vortices.
Furthermore, adjacent to it is the region which features the
robust dynamical regime of periodic splitting into two frag-
ments and their recombination into the original vortex.

The analysis reported in the present work can be exten-
ded in other directions. One possibility is to analyze asym-
metric three-wave modes, with unequal propagation constants
in the two components of the FF field. It may also be inter-
esting to construct self-trapped three-wave χ (2) modes sup-
ported by a periodic (lattice) potential, instead of the HO, see
[45]. Lastly, a challenging possibility is to construct 3D three-
wave ‘light bullets’ supported by the HO trapping potential,
see [32] where this was done for the degenerate two-wave
system.
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