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1. INTRODUCTION

Bose–Einstein phase-transition of ultracold trapped
atoms to stable condensed states has been verified
experimentally in several cases [1–3]. However, a con-
densed state of atoms with a negative 

 

s

 

-wave atom–
atom scattering length would be unstable for a large
number of atoms [4]. So, it was indeed observed in 

 

7

 

Li
gas [3], for which the 

 

s

 

-wave scattering length is 

 

a

 

 =
(

 

−

 

14.5 

 

±

 

 0.4) Å, that the number of allowed atoms in
the condensed state was limited to a maximum value
between 650 and 1300, which is consistent with the
mean-field prediction [4]. We should also note that,
actually, by means of Feshbach resonance techniques
(see Courteille 

 

et al.

 

 [5] and references therein), one has
the ability to control the scattering length, varying it
from positive to negative values, as was shown recently
in the Bose–Einstein condensation of 

 

85

 

Rb [6]. Con-
densed systems with attractive interaction (

 

a

 

 < 0) have
been investigated by our research group in the context
of the Gross–Pitaevskii (GP) formalism and extensions.
More recently, we have also considered the case of
repulsive two-body interactions. In the present report,
we summarize some of our main results, particularly
those concerned with the stability of condensates. In
our approach, we consider two kinds of generalizations
of the GP formalism, by considering the addition of a
real quintic term in the nonlinear effective interaction
[7] and also by considering nonconservative (linear,
cubic, and quintic) terms [8, 9]. Since the correspond-
ing nonlinear Schrödinger equation (NLSE), with trap,
is nonintegrable, we had to use advanced stable numer-
ical methods to solve it for the static [7, 10–13] and
dynamical cases [8, 9, 14]. Variational approaches have
also been considered in our analysis [7, 13, 14].

In the following, we first present the general formal-
ism that we have considered, with some discussion on
specific cases; next, in Section 3, we present results
obtained for the stationary case of the GP formalism
with the addition of a real quintic term in the effective
interaction. Two subsections have been included: in the
first, we consider general nonspherical traps; in the sec-
ond, we consider the influence of anharmonic terms in
the original harmonic trap. In Section 4, we present
results obtained for the dynamical case, considering
three-dimensional symmetric traps, followed by our
concluding remarks.

2. EXTENDED GROSS–PITAEVSKII
MEAN-FIELD APPROXIMATION

The usual mean-field approximation that is consid-
ered to describe condensates of dilute bosonic gases is
given by the GP formalism. We considered an exten-
sion of the usual GP approximation, which is an NLSE
with cubic and quintic nonlinear terms, as well as non-
conservative parts:

(1)

The wave function 

 

Ψ

 

(

 

r

 

, 

 

t

 

) is normalized to the num-
ber of particles 

 

N

 

, which is a constant when the noncon-
servative terms are zero. In Eq. (1), 

 

a

 

 is the two-body
scattering length, 

 

m

 

 is the atomic mass, and 

 

λ

 

3

 

 is

i�
∂Ψ r t,( )

∂t
-------------------- �

2

2m
-------∇ 2

– V r( )+=

+
4π�

2
a

m
--------------- Ψ r t,( ) 2 λ3 Ψ r t,( ) 4

+ Ψ r t,( )

+ i Gγ Gµ Ψ r t,( ) 2
– Gξ Ψ r t,( ) 4

–[ ]Ψ r t,( ).
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—In the present report, we review recent investigations that we have conducted on the stability of
atomic condensed systems, when the two-body interaction is attractive. In particular, the dynamics that occurs
in the condensate due to nonconservative terms is considered in the context of an extension of the mean-field
Gross–Pitaevskii approximation. Considering the relative intensity of the nonconservative parameters, chaotic
and solitonic solutions are verified. Also discussed is the possibility of a liquid–gas phase transition in the pres-
ence of positive three-body elastic collisions.
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the strength of the effective three-body interaction. The
following nonconservative terms were considered: a
linear feeding 

 

G

 

γ

 

 and two dissipative terms given by 

 

G

 

µ

 

,
related to dipolar relaxation, and 

 

G

 

ξ

 

, a three-body
recombination factor. These parameters are assumed to
be constant and positive, for which the corresponding
signs are given in Eq. (1). For the trapping potential

 

V

 

(

 

r

 

), we consider the usual harmonic shape, which in
general can be nonsymmetric and given by 

 

V

 

(

 

r

 

) =

 +  + . In the present communica-

tion, we report only studies for systems with attractive
two-body interaction (

 

a

 

 < 0).

3. STATIONARY CONDENSATES 
WITH NEGATIVE SCATTERING LENGTH

In this section, we consider the case where the non-
conservative terms of Eq. (1) are zero (

 

G

 

γ

 

 = 

 

G

 

µ

 

 = 

 

G

 

ξ

 

 = 0):

 

N

 

 is constant and we can substitute the time-dependent
wave function by 

 

Ψ

 

(

 

r

 

, 

 

t

 

) = 

 

e

 

–

 

i

 

µ

 

t

 

/

 

�

 

ψ

 

(

 

r

 

), where 

 

µ

 

 is the
chemical potential (single particle energy). In the fol-
lowing, we first consider a symmetric case with a repul-
sive three-body term; next, we consider the more real-
istic nonsymmetric case, with 

 

λ

 

3

 

 = 0.

 

3.1. Symmetric Case, with 

 

λ

 

3

 

 > 0

 

By considering a symmetric harmonic trap (with

 

ω

 

 = 

 

ω

 

x

 

 = 

 

ω

 

y

 

 = 

 

ω

 

z

 

), with a nonzero repulsive three-body
term (

 

λ

 

3

 

 > 0), for the conservative case, Eq. (1) is
reduced to

(2)

The total energy of the system is given by

(3)

The central density of the system can be obtained
directly from the solution to the above equation: 

 

ρ

 

c

 

 =

 

|ψ

 

(0)

 

|

 

2

 

. The chemical potential and the three-body
strength, respectively, are redefined by

(4)

Figure 1 shows, in a compact form, the main results
obtained for the total energy 

 

E

 

, mean square radius 

 

〈

 

r

 

2

 

〉

 

,
central density 

 

ρ

 

c

 

, and chemical potential 

 

µ

 

. They are

m
2
----[ωx

2
x

2 ωy
2
y

2 ωz
2
z

2
]

µψ r( ) –
�

2

2m
------- ∇ 2 m

2
----ω2

r
2

+=

–
4π�

2
a

m
------------------ ψ r( ) 2 λ3 ψ r( ) 4

+ ψ r( ).

E d
3
r

�
2

2m
------- ∇ψ r( ) 2 m

2
----ω2

r
2 ψ r( ) 2

+




∫=

–
2π�

2
a

m
------------------ ψ r( ) 4 λ3

3
----- ψ r( ) 6

+




.

β µ
�ω
------- and g3 λ3�ω m

4π�
2
a

---------------
2
.≡ ≡

given as a function of the parameter n, which is related

to the number of particles: n ≡ 2N |a | . The
results are given for several values of the three-body
interaction parameter g3. These results were obtained
by a full numerical calculation based on the shooting
Runge–Kutta method [7]. They show the existence of
two distinct phases in the condensate, when λ3 > 0. As
one can observe in the framework corresponding to the
density variation, the system becomes more than three
times denser than the original one when a transition is
made. Also, for 0 < g3 < 0.0183, we observe that the
density ρc shows back bending typical of a first-order
phase transition. The curves obtained show a clear
dependence of the phase transition with the g3 strength,
and, mainly in the density graph, it is possible to verify
that there is a region of low density (gas) and a region
of high density (liquid). The two-phase regime disap-
pears for g3 > 0.0183, as one can see in Fig. 1. Qualita-
tively, the behavior of the system was reproduced con-
sidering a variational approach (see [7]).
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Fig. 1. Observables of the condensate versus n ≡
2N |a | , related to the number N of particles. The
given values should be multiplied by the respective units:
(mω/�)/(4π|a |) for the central density ρc; (N�ω/n) for the
total energy E; �ω for the chemical potential β; and
�/(2mω) for the mean square radius 〈x2〉 . The values of g3
are given in the upper frame.
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3.2. Nonsymmetric Case, with λ3 = 0

In this subsection, we consider the more realistic
case of nonsymmetric traps that have been employed in
experiments of atomic condensation with negative two-
body scattering length. In Eq. (1), the nonconservative
terms are zero, and we also have not considered elastic
three-body interaction, such that λ3 = 0. Our investiga-
tion, in this case, is concentrated in verifying the influ-
ence of the trapping symmetry on the critical number of
atoms. Motivated by the observed discrepancy between
theoretical predictions and experimental results, in the
maximum critical number of atoms, as reported in [6],
we considered in [10] the cylindrical symmetry
employed in [6], where ω⊥  ≡ ωx = ωy ≠ ωz and ω3 ≡

. By considering this cylindrical symmetry, we
show that the maximum critical number of atoms in the

condensate, Nc , parametrized by k ≡ Nc |a | , is
k = 0.55. This represents a reduction of about 4.4% from
the number obtained with a spherical symmetric trap (k =
0.574). Next, we also considered the influence of
anharmonic terms added to the trapping potential.
The effect of a deviation of the trap potential from
the harmonic behavior is analyzed by considering the
following expression for a cylindrical trap (r⊥  ≡

):

ω⊥
2 ωz

mω/�( )

x
2

y
2

+

(5)

where l0 ≡ . The magnitudes of the distor-
tions added to the harmonic potential in the directions
r⊥  and z are given by δρ and δζ for both cubic (ν = 1) and
quartic (ν = 2) distortions.

Figure 2 shows the behavior of k as the magnitude
of the anharmonic term increases. For both cases that
we have cubic or quartic distortions, we have consid-
ered the case δζ = δρ and δζ = 0. As one can observe, the
higher the anharmonic parameter, the smaller the criti-
cal number of condensed atoms. Considering the JILA
experiment [6], we should also note that, in order to
obtain the theoretical results for k within the region
covered by the experimental error bars, deviations on
the order of 10 or 20% from the harmonic trap will be
necessary at distances on the order of the oscillator
length [11]. Since such anharmonic deviation should be
clearly visible in the experimental analysis, we have to
conclude that a clear explanation for the main part of
the observed discrepancy between theoretical and
experimental results is still to be found.

4. DYNAMICAL BEHAVIOR
OF ATOMIC BOSE–EINSTEIN CONDENSATES

Our aim in this section is to present a study about the
dynamical stability of a condensate in the presence of

V
ν( )

r⊥ z,( )

=  
m
2
---- ω⊥

2
r⊥

2
1 δρ r⊥ /l0( )ν

+( ) ωz
2
z

2
1 δζ z/l0( )ν

+( )+[ ] ,

�/ mω( )
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Fig. 2. Variation of k (related to the critical number of atoms
Nc) as a function of the deviation in the perpendicular direc-
tion, given by δρ. The corresponding deviations in the z
direction, δζ, are given inside the figure. The position of the
experimental k and the corresponding positive error bar (∆)
are also indicated.
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Fig. 3. Diagram for stability, according to the criterion of
[15], considering the nonconservative parameters for the
feeding, γ, and dissipation, ξ. Unstable results are repre-
sented by × and boxes, where the boxes identify chaotic
solutions. The dots are for stable results. The two dotted
guidelines split the regions. The dashed line splits the graph
into two regions according to a variational approach (see [8,
9]); in the upper part, the results are stable; in the lower part,
unstable.
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atomic feeding and dissipation processes. We have con-
sidered the extended version of the Gross–Pitaevskii
equation, given by Eq. (1), with nonzero dissipative
terms, and have considered the spherically symmetric
case. In particular, we assumed consideration of a more
realistic case, with λ3 = 0. For the atomic dissipation,
we assumed that only the term Gξ is nonzero, corre-
sponding to three-body recombination, since the contri-
bution of the other dissipative term, due to dipolar
relaxation, is usually considered to be much smaller.

The time evolution of the observables that we have
studied, such as the mean square radius and the number
of atoms, was extended up to ωt = 500. A wide range of
values for the nonconservative parameters was
explored after we have realized the rich dynamical
structure presented by (1). For convenience, the non-
conservative parameters related to feeding and dissipa-
tion were, respectively, replaced by dimensionless

parameters, given by γ ≡ 2Gγ/(�ω) and ξ ≡
Gξ(mω/�)2/[(4π|a |)2(2�ω)]. We have observed that, in
the long-time evolution, depending on the relation
between γ and ξ, the solutions can be very unstable and
chaotic, as well as very stable, solitonic-like solutions.
We have explored numerically the dynamical solutions
of (1), for γ and ξ covering a wide region from 10–1 to
10–5, considering the actual perspective of experiments
with BEC, in which it is possible to vary the two-body
scattering length from positive to negative values. We
have mainly been interested in verifying the parametric
regions, defined by γ and ξ, where the equation gives
stable or unstable solutions. The results are presented in
a diagrammatic form in Fig. 3. The upper-left part is the
region where the solutions are stable (small feeding,
with increasing dissipation), and the lower-right part is
the more unstable region (large values for the feeding
parameter, with less dissipation).

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

ξ = 10–1

ξ = 10–2

ξ = 10–3

ξ = 5 × 10–4

ξ = 10–4

ξ = 10–5

γ = 3 × 10–3

N/Nc

2.0

1.5

1.0

0.5

0 100 200 300 400 500
τ

ξ = 10–5

ξ = 10–4

ξ = 5 × 10–4

ξ = 8 × 10–4

ξ = 10–2

ξ = 10–1

γ = 5 × 10–3

Fig. 4. Time evolution of the number of particles in the condensate state normalized by the initial number one (N/N0) as a function

of the dimensionless time τ ≡ ωt. In the upper panel, representing the case γ = 3 × 10–3 and a set of values of ξ, we can verify decay,
sequences of growths and collapses, and formation of autosolitons. In the lower panel, with γ = 5 × 10–3, we note decreasing N,
autosolitons, and sequences of collapses with chaotic behavior (as for ξ = 10–5).
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Typical behaviors of the time evolution of the num-
ber of particles for fixed values of the feeding parame-
ter, γ = 0.003 and γ = 0.005, and for several values of
the dissipation parameter ξ are shown in two panels of
Fig. 4. In the upper panel, we notice that the system can
show collapsing behavior when the relation between
the feeding parameter and dissipation is large. In the
case where the feeding is further increased, as shown in
the lower frame, we have also observed cases where the
maximum critical number Nc is no longer restricted,
with a clear indication that higher radial modes are pop-
ulated. In order to make a stability analysis of the equa-
tion and verify the possible occurrence of chaotic
behaviors, we have considered the Deissler–Kaneko
criterion [15], which corresponds to a calculation of
extended Lyapunov exponents. Chaotic behaviors are
identified by a positive slope of the exponents in the
time evolution. As a general remark, we have observed
that, in the regime of small feeding (γ ≤ 10–4), the
extended Lyapunov exponent shows no positive slope
(no chaos). However, for larger values of γ/ξ, from γ ~
10–3 to 10–1, we have verified a complex dynamics, with
the occurrence of collapses and chaos [8, 9].

5. CONCLUSION

In summary, we reported here a few results of our
investigation on the stability of atomic condensed sys-
tems, with negative two-body scattering length, consid-
ering extensions of the GP formalism. The maximum
critical number of particles was studied by considering
the stationary version of the formalism. We studied the
effect in the critical number due to deviations from the
spherical symmetry in the harmonic trap, as well as the
effect of trap deformation caused by anharmonic terms.
In the static case, we also considered the effect of an
elastic three-body interaction in the system. We
observed that, for a range of values of this interaction,
there exists a transition similar to the liquid–gas phase
transition.

In the dynamical cases, we solved the nonconserva-
tive Gross–Pitaevskii equation with inelastic three-
body interactions and atomic amplification from the
external cloud. In this case, we observed interesting
dynamics, leading to chaotic behavior or very stable,
solitonic-like, solutions. The chaotic behavior was
observed mainly when the feeding parameter (linear
term, in the NLSE) was about two orders of magnitude
larger than the dissipation parameter (quintic term in
the NLSE). Also observed were weak and strong insta-
bilities (causing collapses and growth–collapse cycles).

In some cases, “autosolitonic” solutions were observed,
with final stabilization of the system, with equilibrium
between feeding and dissipation processes.
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