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Abstract

We consider interference patterns produced by coherent arrays of Bose–Einstein condensates during their one-d
expansion. Several characteristic pattern structures are distinguished depending on value of the evolution time. Trans
of Talbot “collapse–revival” behavior to Fraunhofer interference fringes is studied in detail.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The interference measurements [1,2] on two
panding Bose–Einstein condensates (BECs) have
ated new important field of research where the d
sity profile of gas, imaged after releasing from t
trap, provides important information about the ph
of the ground-state wave function. Expansion of
herent arrays of BECs provides new opportunities
test the phase properties of the system [3–6]. For
ample, Fraunhofer interference patterns observe
[4] demonstrate strong coherence of BECs confi
in separate traps, and experiment [6] shows that
coherence can be manipulated by means of colla
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and revivals of wave functions due to nonlinear int
action of BECs in tightly confined states formed
three-dimensional periodic trapping potential.

It is well known (see, e.g., [7]) that mentione
above “collapse–revival” behavior of quantum-mec
nical wave functions [8,9] is a temporal counterpar
optical Talbot effect [10,11] in which interference pa
tern behind the grating restores at distances multip
the so-called Talbot distanced2/λ (d is the slit spacing
in the grating andλ is the wavelength of light). Simi
lar Talbot effect was also observed in atom optics [
13]. Analogy between spatial Talbot effect and tem
ral collapse–revival behavior of wave functions su
gests that such collapses–revivals should exist in in
ference of matter waves emitted from arrays of BE
provided evolution time is small enough, and inde
such effect was observed in [14]. In this connect
it is natural to ask how this short-time Talbot beha
.
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228 A. Gammal, A.M. Kamchatnov / Physics Letters A 324 (2004) 227–234

me
e-

the
s.

ory
ned

al
xial
to

ort-
on
age
nel
me
ion
ave
ot
ge).

l
itio

s
ic
the
the

f

ial
th
ian

of

ith
rge
xial
rmi
ber

ap
l-
.

rent

ther

the
ite
ior evolves for finite array of condensates to long-ti
Fraunhofer behavior observed in [4]. This Letter is d
voted to consideration of this problem.

In Section 2 we present general formulas for
wave function produced by a linear array of BEC
We confine ourselves with one-dimensional the
under supposition that condensate remains confi
in radial direction after turning off a periodic optic
potential and evolution takes place only along the a
direction of the BECs array. This formulas permit us
distinguish characteristic stages of evolution—sh
time Talbot stage with revivals of the wave functi
in the central part of the array, intermediate time st
when Fraunhofer fringes already formed with Fres
diffraction pattern inside each of them, and long-ti
Fraunhofer stage with standard density distribut
along fringes. These stages of evolution of the w
function are studied in detail in Section 3 (Talb
stage) and Section 4 (transition to Fraunhofer sta
The last Section 5 is devoted to conclusions.

2. General formulas

After switching off the periodic optical potentia
the condensate density decreases and under cond
that the initial size∼ σ of each BEC is much les
than the spacingd between sites, the interatom
interaction can be neglected during most time of
evolution and, hence, the wave function obeys
linear Schrödinger equation

(1)ih̄ψt = − h̄2

2m
ψxx.

If the initial state is given byψ(x,0) = ψ0(x), then
after timet it evolves into

(2)ψ(x, t) =
∞∫

−∞
G(x − x ′, t)ψ0(x

′) dx ′,

whereG(x − x ′, t) is well-known Green function o
Eq. (1) (see, e.g., [15])

(3)G(x − x ′, t) =
√

m

2πih̄t
exp

[
im(x − x ′)2

2h̄t

]
.

To simplify calculations, we suppose that the init
wave function of BEC in the site of the array wi
the coordinatekd can be approximated by a Gauss
n

function and, hence, we represent the initial state
BEC as

(4)

ψ(x,0) = 1

π1/4
√
σ

∑
k

Ake
iφk exp

[
− (x − kd)2

2σ 2

]
,

whereNk = |Ak|2 is equal to number of atoms inkth
condensate (we suppose thatσ 
 d) and φk is its
phase. Then Eq. (2) yields the solution

ψ(x, t) = 1

π1/4
√
σ(1+ ih̄t/mσ 2)

(5)

×
∑
k

Ake
iφk exp

[
− (x − kd)2

2σ 2(1+ ih̄t/mσ 2)

]
.

This formula should be specified in accordance w
the problem under consideration. In the case of la
number of condensates in the array confined in a
direction by a parabolic potential, the Thomas–Fe
approximation can be used for calculation of num
of atoms inkth condensate which gives [4]

(6)Nk = A2
k = 15N

16kM

(
1− k2

k2
M

)2

,

where

(7)kM =
√

2h̄ω̄

mω2
xd

2

(
15

8
√
π
N

a

aho

d

σ

)1/5

,

N = ∑
Nk is the total number of atoms,̄ω =

(ωxω
2⊥)1/3 is the geometric mean of the magnetic tr

frequencies,aho = √
h̄/mω̄ is the corresponding osci

lator length, anda > 0 is thes-wave scattering length
In the experiment [4] there waskM ∼= 102 � 1, and

this large parameter suggests that there are diffe
stages of evolution.

For

(8)t 
 md2

h̄

each condensate evolves independently of each o
and there is no their interference effects.

For

(9)t ∼ md2

h̄

 kM

md2

h̄

we have interference between condensates, but in
central part of the array the influence of its fin
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size is negligibly small and local interference patte
can be approximated by that of an infinite perio
lattice of condensates which leads to temporal Ta
effect.

For

(10)kM
md2

h̄

 t 
 k2

M

md2

h̄

the Fraunhofer fringes begin to form. Indeed, th
positions are given by (see, e.g., [4])

(11)xn(t) ∼= ±n
2πh̄

dm
t, n = 0,1,2, . . . ,

and if t satisfies the condition (10), then distanc
between neighboring fringes∼ 2πh̄t/md are much
greater than the size of each fringe∼ 2kMd (see
below). At the same time, the interference patt
inside each fringe is formed by only some part
the array and hence we get Fresnel diffraction pat
along the fringe.

At last, for

(12)t � k2
M

md2

h̄

we arrive at usual Fraunhofer diffraction when t
whole array contributes into interference pattern ins
each fringe.

To illustrate these stages of evolution of the wa
function, we have shown in Fig. 1 the distributio
of densityρ = |ψ|2 calculated from formulas (5)–(7
with φk = 0 (coherent condensates). We see that
t 
 kM(md2/h̄) the density distribution reproduce
periodically in time with periodtr ∼ md2/h̄ (see exac
formula (20)), the side fringes begin to form att ∼
kM(md2/h̄), and fort � kM(md2/h̄) there are peak
of density at the coordinates given by (11) and profi
of fringes take Fraunhofer form fort � (kMd)2m/h̄.
The solution (5) permits us to investigate these sta
of evolution analytically.

3. Talbot revivals of wave function

For time values in the region (9), we can appro
imate the array by infinite lattice of equidistant co
densates so that for coherent condensates their
function is given by

ψ(x, t) = A

π1/4
√
σ(1+ ih̄t/mσ 2)

(13)×
∞∑

k=−∞
exp

[
− (x − kd)2

2σ 2(1+ ih̄t/mσ 2)

]
.

With the use of definition ofθ3-function (see, e.g.
[16])

(14)θ3(z, τ ) =
∞∑

k=−∞
exp

[
iπ

(
τk2 + 2zk

)]
the wave function (13) can be presented in the form

(15)

ψ(x, t) = π1/4A

d

√
2σ i

τ
exp

(
− iπx2

d2τ

)
θ3

(
x

dτ
,−1

τ

)
,

where

(16)τ = 2πiσ 2

d2

(
1+ ih̄t

mσ 2

)
.

By means of transformation formula (see [16])

(17)θ3

(
z

τ
,−1

τ

)
= √−iτ exp

(
iπz2

τ

)
θ3(z, τ )

we transform (15) into

(18)ψ(x, t) =
√

2πσA

π1/4d
θ3

(
x

d
, τ

)
.

Then the periodicity property ofθ3-function, θ3(z,

τ ± 2) = θ3(z, τ ), leads at once to the periodicity o
the wave function,

(19)ψ(x, t + tr ) = ψ(x, t),

with the period

(20)tr = md2

πh̄
.

If the array of BECs is realized in optical period
potential with light wavelengthλ, then the spacing
between neighboring lattice sites is equal tod = λ/2
and the revival time can be expressed in the form

(21)tr = 1

4

2πh̄

ER

,

where

(22)ER = h̄2q2

2m
is the recoil energy (q = 2π/λ).
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at
Fig. 1. Evolution of the density profile of array of condensates with time calculated according to Eqs. (5)–(7) withd = 8,σ = 1 (in dimensionless
units) andkM = 10. At t = 0.3tr , wheretr is given by Eq. (20), we see complex interference pattern (“collapse” of wave function); att = 0.5tr
the central part coincides with that fort = 0 but shifted to a half-periodd/2; at t = tr the initial distribution is almost completely restored;
t = 5tr the side fringes start to form, and, finally, att = 30tr we see Fraunhofer diffraction of matter waves from finite “grating”.
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The evolution timetr /2 corresponds to the transfo
mation ofθ3-functionθ3(z, τ +1) = θ4(z, τ ) = θ3(z+
1/2, τ ), that is we obtain the wave function shifted
the distanced/2 with respect to its initial form:

(23)ψ(x, t + tr /2) = ψ(x + d/2, t).

Above calculation explains periodic restoration
initial wave function by means of transformatio
properties of θ -functions. To relate this approac
with standard one (see, e.g., [9]), let us consi
the problem from a different point of view. Th
linear Schrödinger equation (1) with periodic initi
condition

(24)ψ(x,0) = A

π1/4
√
σ

∞∑
k=−∞

exp

[
− (x − kd)2

2σ 2

]

can be solved by the Fourier method which gives
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ψ(x, t)

=
√

2π1/4A

d

(25)

×
{

1+ 2
∞∑
k=1

exp

[
−2π2σ 2

d2

(
1+ ih̄t

mσ 2

)
k2

]

× cos

(
2πx

d
k

)}
.

(The relationships between presentations (13) and
of the same wave functionψ(x, t) is expressed by th
known identity for these two series; see, e.g., [17
We see that att equal to multiple of Talbot timetr ,
t = ntr , all phase factors in (25) become equal
unity and (25) reduces to the Fourier series for
initial periodic wave function (24). This method o
derivation of time-periodicity of the wave functio
shows that periodic restoration of the initial sta
is not a specific feature of the initial state (2
built of Gaussian functions. Indeed, any perio
initial function can be expanded into Fourier ser
and harmonics cos(2πxk/d), k = 1,2, . . . , evolve

with time according to factors exp(−i 2π2h̄t

md2 k2) which
become equal to unity att = ntr . Thus, any periodic
initial wave function completely restores periodica
its form. The described above picture of periodic
time changes of the interference pattern is shown
Fig. 2 where even for relatively small number
condensates first several revivals are clearly seen.

Fig. 2. Evolution of density profiles for BEC arrays with ze
relative phase. Two first revivals att = ntr , n = 1,2, are clearly
seen as well as “fractional revivals” at intermediate momentstr /8,
tr /4, 3tr /8, tr /2, etc.
The above theory can be generalized on non-z
phases in the initial state and hence in the solu
(2). For example, in the case of alternating phase
condensates,

(26)eiφk = (−1)k,

the wave function can be expressed in terms ofθ4-
function [16],

ψ(x, t) = π1/4A

d

√
2σ i

τ

(27)× exp

(
− iπx2

d2τ

)
θ4

(
x

dτ
,−1

τ

)
,

or, with the use of the transformation formula [16],

(28)θ4

(
z

τ
,−1

τ

)
= √−iτ exp

(
iπz2

τ

)
θ2(z, τ ),

in the form

(29)ψ(x, t) =
√

2πσA

π1/4d
θ2

(
x

d
, τ

)
.

Then the propertyθ2(z, τ + 1) = exp(πi/4)θ2(z, τ )

leads to restoration of the initial state (up to inessen
constant phase factor) after revival time

(30)tr = md2

2πh̄
= 1

8

2πh̄

ER

.

Let us estimate an order of magnitude of the rev
time for arrays of BECs. In the case [6] of87Rb
BECs array loaded into optical potential with lig
wavelengthλ = 838 nm formula (21) givestr � 75 µs.
This is about one order of magnitude less than
revival time, caused by nonlinear interaction, of sin
condensate in the experiment [6]. In this experim
absorption images were taken after a time-of-fli
period of 16 ms which is much greater (with fact
∼ 200) than our estimate oftr . For number of sites
in 3D lattice ∼ 103 we havekM ∼ 10 and, hence
the observed interference patterns correspond to
Fraunhofer limit (12). In this case the differen
of interference patterns was caused by differenc
initial states of condensates at different “hold time
of evolution of each condensate in strongly confin
states formed by 3D periodic trapping potential.

In the experiment [4] the revival time istr � 69 µs
and a typical image was taken att = 29 ms, that is for
kM ∼ 100 again in the Fraunhofer limit (in accordan
with the theory developed in this Letter).
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4. Transition to Fraunhofer interference

Now we shall turn to the regions (10) and (12). E
fects of Fresnel diffraction can be noticed in Fig.
for t = 10tr . However, they are not expressed clea
enough because of smooth distribution (6) of den
in the array used in our calculations. Therefore it
more instructive to consider finite array with equal a
plitudesAk = 1 of wave functions in each condensa
and takeφk = $φ · k, that is with equal difference
$φ of phases between neighboring condensates. T
Eq. (5) witht � mσ 2/h̄ reduces to

ψ(x, t)

∼= 1

π1/4

√
mσ

ih̄t
e

imx2
2h̄t e

−mσ2x2

2h̄2t2

(31)

×
kM∑

k=−kM

exp

[
−i

(
mdx

h̄t
− $φ

)
k + imd2

2h̄t
k2

]
,

where we have taken into account only leading r
and imaginary contributions in the series expansio
the exponential in powers ofmσ 2/h̄t . The sum here
has maximal amplitude when all terms are in ph
in linear in k approximation. This condition define
coordinatesxn of the centers of fringes,

(32)xn = 2πh̄

md

(
n+ $φ

2π

)
t, n = 0,±1,±2, . . . .

To consider profiles of fringes, we introduce t
coordinateδ which is reckoned from the center of th
fringe:

(33)x = xn + δ,

so that dependence onδ is determined mainly by th
factor

(34)Φ(δ, t) =
kM∑

k=−kM

exp

(
− imdδ

h̄t
k + imd2

2h̄t
k2

)
.

If t satisfies the condition (10), then both terms in
exponential have the same order of magnitude and
one hand, the fringe width is of order of magnitude
the array length,δ ∼ 2kMd , and, on the other hand, it
much less than the distance between fringes. There
the coordinatex in the factor exp(−m2σ 2x2/2h̄2t2)

can be replaced byxn. Thus, the wave function in
Fig. 3. The central fringe profile for several values of the num
of sites in the array. Timet corresponds to the region (10). Th
plots are calculated ford = 8, σ = 1 and (a)kM = 20 at t = 40tr ;
(b) kM = 40 att = 80tr ; (c) kM = 80 att = 160tr . Formation of the
Fresnel pattern is clearly seen.

vicinity of thenth fringe is given by

ψn(x, t)

= 1

π1/4

√
mσ

ih̄t
e

imx2
2h̄t

(35)× exp

[
−2π2σ 2

d2

(
n + $φ

2π

)2]
Φ(δ, t),

whereδ = x − xn. Now, for kM � 1 the sum in (34)
can be approximated by integrals which are ea
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learly

Fig. 4. Evolution of density profile of central fringe on time. Values of the parameters are equal tod = 8, σ = 1, kM = 80 and (a)t = 500tr ;
(b) t = 1000tr ; (c) t = 2000tr ; (d) t = 16000tr . Transformation of Fresnel profile shown in Fig. 3(c) to standard Fraunhofer profile is c
seen.
of

rn
rly
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expressed in terms of Fresnel functions [18]:

Φ(δ, t) =
√

πh̄t

md2e
imδ2
2h̄t

(36)

×
[
C

(√
m

2h̄t
(kMd + δ)

)

+ C

(√
m

2h̄t
(kMd − δ)

)

+ i

(
S

(√
m

2h̄t
(kMd + δ)

)

+ S

(√
m

2h̄t
(kMd − δ)

))]
.

Thus, distribution of density in thenth fringe is given
by

|ψn|2 =
√
πσ

d2
exp

[
−4π2σ 2

d2

(
n+ $φ

2π

)2]
(37)

×
{[

C

(√
m

2h̄t
(kMd + δ)

)

+ C

(√
m

2h̄t
(kMd − δ)

)]2

+
[
S

(√
m

2h̄t
(kMd + δ)

)

+ S

(√
m

2h̄t
(kMd − δ)

)]2}
.

The exponential factor determines the number
atoms in thenth fringe:

(38)Nn = const× exp

[
−4π2σ 2

d2

(
n+ $φ

2π

)2]
.

This formula reduces to Eq. (6) of Ref. [4] for$φ = 0.
Dependence onδ determines fine interference patte
inside fringes. It is expressed by the factor in cu
brackets and demonstrates typical Fresnel form (
e.g., [15, Section 3.3], or [19, Section 8.7]) of diffra
tion from a slit with width 2kMd equal to the whole
array length. Accuracy of this analytical descripti
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depends on the number of sites in the array and
creases with growth ofkM . In Fig. 3 it is shown how
exact profile of density along the fringe changes w
increase ofkM . Its transformation into Fresnel diffrac
tion pattern is clearly seen. Small “ripples” are ob
ously caused by the discrete structure of the array.

For larger values of time (12) Fresnel structu
evolves into usual form of density distribution
Fraunhofer diffraction from finite slit with width
2kMd . In this limit of very larget the quadratic in
k tern in exponentials in Eq. (34) is much less th
unity and can be omitted. Then simple integrat
givesΦ(δ, t) = 2h̄t

ndδ
sin(mkMdδ

h̄t
) and hence distribution

of density inside fringes is proportional to

(39)
∣∣Φ(δ, t)

∣∣2 = 4
sin2(mkMdδ/h̄t)

(mdδ/h̄t)2

which is standard Fraunhofer diffraction distributi
from finite slit (see, e.g., [19, Section 8.5]). The d
scribed here evolution of profile is illustrated in Fig.
The total intensity ofnth fringe is still determined, o
course, by Eq. (38).

5. Conclusion

We have presented in this Letter analysis of
terference of matter waves during one-dimensio
expansion of finite arrays of condensates. It sho
that the interference pattern exhibits quite com
cated evolution with time from Talbot “collapses a
revivals” of wave function through intermediate r
gion of Fraunhofer fringes with Fresnel patterns ins
them, and, eventually, to standard Fraunhofer diffr
tion from finite grating. One may suppose that te
nique of density imaging will permit one to study e
perimentally all these stages.
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