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Abstract
The interaction of matter-wave solitons in elongated Bose–Einstein condensate
with time-dependent parabolic trap is investigated using the perturbation theory
based on the inverse scattering transform. Regimes of parametric and main
resonances in solitons interactions are investigated for harmonic trap potentials.
The predictions of the theory are confirmed by the numerical simulations of
the quasi-one-dimensional Gross–Pitaevskii equation.

1. Introduction

Realization of bright matter waves in the laboratory has opened up an interest in solitary
matter wave propagation [1, 2]. In the experiment of [2] a bright matter-wave soliton train was
created raising questions about the relative phase between solitons [3]. From soliton theory,
it was first pointed out in [4, 5] that solitons in the nonlinear Schrödinger (NLS) equation
with zero (π ) relative phase difference produce attractive (repulsive) interactions. Inverse
scattering transform (IST) provided analytical solution to the soliton–soliton problem [6–9].
The same results can also be obtained from the variational approach [10]. In [7] it was shown
that zero phase solitons develop an oscillating mode, whose frequency is well determined by
soliton parameters.

Recently attention has been devoted to the theoretical studies of the soliton–soliton
interactions in the trap potential. The energy exchange between solitons in the trap and
the chaotic behaviour in oscillations have been investigated in [11, 12]. The interactions of
two and N-solitons in the harmonic trap were also analysed in [13, 14] from purposes of source
of the generation and storage of matter-wave solitons train. A natural tool to investigate diverse

0953-4075/05/224111+11$30.00 © 2005 IOP Publishing Ltd Printed in the UK 4111

http://dx.doi.org/10.1088/0953-4075/38/22/014
mailto:vpbarros@astro.iag.usp.br
mailto:mbrtka@if.usp.br
mailto:gammal@if.usp.br
mailto:fatkhulla@yahoo.com
http://stacks.iop.org/JPhysB/38/4111


4112 V P Barros et al

dynamical behaviour of the system, in particular the presence of resonances, is to obtain the
condensate response to temporal force as in [15, 16].

The main goal of this work is to investigate soliton–soliton interactions in the presence
of a time-dependent harmonic trap. The time-dependent trap is used to analyse the collective
oscillations of condensate [17]. Here we show that such modulations can help to obtain
information about the matter-wave solitons interaction and give the possibilities of controlling
the interactions. Note that the single bright soliton dynamics under a time-dependent trap were
considered in [18–20]. The Schrödinger equation is integrable either with harmonic potential
or with cubic nonlinearity. However, combination of both terms produce nonintegrable
perturbed nonlinear Schrödinger model. We thus study the model by the perturbation theory
based on the inverse scattering transform following [4, 21, 22] and by full numerics solving
directly the Gross–Pitaevskii equation.

The paper is organized as follows: in sections 2 and 3 we describe the model and
analytical approaches based on the inverse scattering transform, in section 4 analytical and
numerical results are presented and discussed, and finally in section 5 we summarize the main
conclusions. In the appendix we derive the main equations using the variational approach.

2. The model

Matter waves in the Bose–Einstein condensate have been shown to be well described by the
Gross–Pitaevskii equation which in three space dimensions has the form

ih̄�t = − h̄2

2m
∇2� +

m

2

(
ω2

⊥r2
⊥ + ω2

xx
2)� +

4πh̄2as

m
|�|2�, (1)

where m is the atomic mass, as is the interatomic scattering length, as > 0 corresponds to the
repulsive condensate and as < 0 to the attractive one, ω⊥ is the radial frequency and ωx is
the axial frequency. The order parameter � is normalized to N, where N is the number of the
condensed atoms in the trap.

For an elongated trap with tight confinement in the transverse direction ω⊥ � ωx the
quasi-one-dimensional(1D) Gross–Pitaevskii equation can be derived as [23]

ih̄ψt +
h̄2

2m
ψxx − g1D|ψ |2ψ − m

2
ω2

xx
2ψ = 0, (2)

where g1D = 2h̄asω⊥, a⊥ = √
h̄/(mω⊥) and

∫ |ψ |2 dx = N . Below we will consider the
case of attractive condensate (as < 0). In this case, the condition of validity of the quasi-1D
approximation is

N
|as |
a⊥

� 1. (3)

Typical experimental data are ω⊥ = 2π × 640 Hz, ωx = 2π × 3.2 Hz, thus
ωx/ω⊥ = a2

⊥
/
a2

x ∼ 0.005. The scattering length is as = −0.16 nm [2]. The critical
point when the collapse occurs is determined by the parameter κc = N |as |/a⊥ = 0.676
[23, 24] (connected with the soliton amplitude ν; see below).

To simplify the analysis, we introduce dimensionless variables ω = ωx/ω⊥, t ′ =
tω⊥, x ′ = x/a⊥, u = √

2|as |ψ and we rewrite the equation as

iut + 1
2uxx + |u|2u − 1

2ω2(t)x2u = 0, (4)

where the primes on t ′ and x ′ are omitted for the convenience of notation.
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3. Equations for two-soliton interactions in time-dependent trap

In this paper, we study the interaction of two solitons when the trap is varying in time. As
far as we know, this problem has not been considered previously and is of general interest as
much for Bose–Einstein condensates (BEC) as for nonlinear optics. For two well-separated
solitons (i.e., for the relative distance much larger that the solitons widths ai, i = 1, 2), the
solution is given approximately by

u(x, t) = u1(x, t) + u2(x, t), (5)

where the single soliton solution is

un(x, t) = 2νn sech[2νn(x − ξn)] ei2µn(x−ξn)+iδn (6)

with n = 1, 2. Substituting equation (5) into equation (4) and taking into account weak
overlapping condition (ν1ξ1 − ν2ξ2 � 1), we find the system

iu1,t + 1
2u1,xx + |u1|2u1 = 1

2ω2x2u1 − (
u∗

2u
2
1 + 2|u1|2u2

)
,

iu2,t + 1
2u2,xx + |u2|2u2 = 1

2ω2x2u2 − (
u∗

1u
2
2 + 2|u2|2u1

)
.

(7)

This system can be obtained from the Lagrangian

L =
∑
n=1,2

[
i

2
(un,tu

∗
n − c.c.) − 1

2
|un,x |2 +

1

2
|un|4 − 1

2
ω2x2|un|2

]

− iε(u∗
1R21[u1] + u∗

2R12[u2] + c.c.) (8)

where

εRmn[un] = i
(
u∗

mu2
n + 2um|un|2

)
(9)

with m, n = 1, 2,m 	= n and we must neglect un dependence in Rmn when taking the
variational derivative. Since the overlap between solitonic tails is small and the trap potential
is weak (ω2 � 1), we can use the perturbation theory based on the inverse scattering transform
theory [4, 21, 22]. The perturbed NLS equation is

iut + 1
2uxx + |u|2u = iεR(u). (10)

The equations for the soliton parameters are

dν

dt
= ε

2
Re

∫ ∞

−∞

R[us(z)]

cosh(z)
e−iθ(z,t) dz, (11)

dµ

dt
= ε

2
Im

∫ ∞

−∞

tanh(z)

cosh(z)
R[us(z)] e−iθ(z,t) dz, (12)

dξ

dt
= 2µ +

ε

4ν2
Re

∫ ∞

−∞

zR[us(z)]

cosh(z)
e−iθ(z,t) dz, (13)

dδ

dt
= 2µ

dξ

dt
+ 2(ν2 − µ2) +

ε

2ν
Im

∫ ∞

−∞

(1 − z tanh(z))

cosh(z)
R[us(z)] e−iθ(z,t) dz, (14)

where z = 2ν(x − ξ(t)), θ = (µ/ν)z + δ. As the result we find the evolution equations for
the soliton parameters:

dνn

dt
= (−1)n16ν3 e−2νr sin(φ), (15)

dµn

dt
= −1

2
ω2ξn + (−1)n16ν3 e−2νr cos(φ), (16)
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dξn

dt
= 2µn + 4ν e−2νr sin(φ), (17)

dδn

dt
= −1

2
ω2

(
ξ 2
n − π2

48ν2
n

)
+ 2

(
ν2

n + µ2
n

)
+ 8µν e−2νr sin(φ) + 24ν2 e−2νr cos(φ), (18)

where φ = 2µr +ϕ, ν = (ν1 +ν2)/2, µ = (µ1 +µ2)/2, r = ξ1 − ξ2, ϕ = δ2 − δ1. Here r is the
distance between solitons and ϕ is the relative phase of solitons. It was assumed that r > 0
and |ν1 − ν2| � ν, |µ1 − µ2| � µ, |ν1 − ν2|r � 1 and νr � 1. Note that the variational
approach in the appendix is free of the restriction for weak frequencies. For large distances the
interaction term tends to zero and we get simply the harmonic oscillator. The restriction on the
relative distance occurs from the requirement that the contribution from the trap is one order
or more than the contribution from the solitons interaction, i.e., ω2r � 64ν3 exp(−2νr). The
adiabatic approximation considered in this work is valid for the time ∼1/ε. The obtainment
of a more accurate estimate for the time the calculation of the radiation is required, but that
represents a separate problem.

From this system we obtain the equation for the relative distance of solitons

d2r

dt2
= −ω2(t)r − 64ν3 e−2ν|r| sgn(r) cos(φ), (19)

where sgn(r) = 1 for r > 0 and sgn(r) = −1 for r < 0. In the dimensional units the equation
has the form

d2r̄

dt̄2
= −ω2

x(t)r̄ − 64a⊥ω2
⊥ν3 e−2ν|r̄|/a⊥ sgn(r) cos(φ), (20)

where ν = N |as |/(2a⊥). This is the equation of motion of unit mass particle in anharmonic
effective potential

U(r) = 1
2ω2(t)r2 − 32ν2 e−2ν|r| cos(φ). (21)

This potential has a discontinuity at r = 0. The quasi-particle theory of Karpman–Solov’ev
is valid when νr � 1. The equation for the relative phase is

d2φ

dt2
= 128ν4 e−2ν|r| sin(φ). (22)

4. Analysis of the different regimes

1. For the phase difference φ = 0 the interaction between solitons is attractive and in the
dependence on the initial separation we have two oscillating regimes: in the first regime
the harmonic trap is dominating and the frequency of oscillations is just given by the trap
frequency. In the second the periodic coalescence of solitons dominates due to the interaction
potential. When the trap is negligible, the solitons oscillate with the period [7]

T ≈ π

4ν2
eνr0 , (23)

where r0 ≡ r(t = 0)νr0 � 1. In general, the period of oscillations can be estimated from the
potential of equation (21) and is given by

T ≈ 4

√
1

2

∫ r0

0

dr√
1
2ω2

(
r2

0 − r2
)

+ 32ν2( e−2νr − e−2νr0)

. (24)

Although equation (21) is valid only for νr � 1, for small values of r the solitons move
relatively fast when compared to moderate and large r ′s and there is little contribution to the
period. Thus the lower limit of the integrand of equation (24) can be taken as zero.
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Figure 1. Soliton–soliton oscillation frequency perturbed by stationary harmonic trap. The phase
difference is φ = 0 and relative distance is r0 = 20. Dashed line corresponds to ν = 0.10 and
solid line to ν = 0.2.
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Figure 2. Potential U(r) and phase space diagram for φ = 0, ν = 0.15, ω2 = 1.6 × 10−4. These
plots are strictly valid only for νr � 1.

In figure 1 we present the numerical results of the oscillating frequency as a function of
the trap frequency. For high trap frequencies, the trap almost entirely dominates the oscillating
phenomena. For negligible trap (ω ∼ 0) the numerics agree well with equation (23). Finally,
for expulsive trap (ω2 < 0) there is a critical trap frequency where the system stops oscillating.
For ω2 below the squared critical frequency, the solitons are expelled. This demonstrates the
richness of phenomena that can be controlled by external potential.

For the harmonic case (ω2 > 0) we present the potential and phase space diagram in
figure 2. Note that for large distances between solitons the potential U(r) is almost harmonic.

In order to study a time-dependent trap, we considered the trap frequency varying in time
in the form

ω2 = ω2
0[1 + η cos(ωf t)] (25)
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Figure 3. Oscillations of the relative distance (r) for the zero relative phase case φ = 0 and
different initial relative distances r0. (a) r0 = 15, (b) r0 = 20, (c) r0 = 25, (d) r0 = 30; where
ν = 0.2, ω0 = 0.005, ωf = 2ω0, η = 0.3; PDE (solid lines) corresponds to equation (4) and ODE
(dashed lines) to equation (26). In the PDE the distance of the solitons were obtained from the
distance of centres of mass calculated for (−∞, 0] and for [0, ∞).

and in this case equation (19) is modified for r > 0 to

d2r

dt2
+ ω2

0[1 + η cos(ωf t)]r + 64ν3 e−2νr cos(φ) = 0. (26)

In figure 3 we present the results of the numerical simulations of the ODE and PDE
for the case of ωf = 2ω0. As can be seen, for sufficiently large initial separation of the
solitons (r0 > rc ∼ 25), the parametric resonance in the oscillations is turned on, which leads
to the growth of the relative distance. The inverse scattering transform results from ODE
qualitatively agree with the full numerical simulations from PDE.

2. For the phase difference φ = π the interaction between solitons is repulsive and the
effective potential, which is the sum of the trap and interaction potentials, has the form of the
double well potential, i.e. equilibrium point at r = 0 becomes unstable and two new equilibria
points appear. The positions of minima are given by

r1,2 = ±re, re = 64ν3 e−2νre

ω2
. (27)

In figure 4 we show the potential U(r) and the phase space diagram for φ = π , using suitable
parameters. The two lower points at the bottom of the double well correspond to the two
fixed points. The fixed point in the oscillations of the relative distance r corresponds to the
stable bisoliton state, when the centres of both solitons are performing small oscillations near
the stable points. For the phase difference φ = π , we also consider the time-dependent trap
frequency (25) and equation (26). In this case, the phase is oscillating with small amplitude
near π as

d2φ1

dt2
+ �2

φφ1 = 0, (28)

where φ = π + φ1, and with the frequency �φ = 8
√

2ν2 exp(−νre) = √
2νreω0, which is

well separated from oscillations of the relative distance. Thus, in the linear approximation,
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Figure 4. Potential U(r) and phase space diagram for φ = π showing fixed points. re = 15,

ν = 0.15, ω = 1.26 × 10−2. These plots are strictly valid only for νr � 1.

the phase oscillations are decoupled from the oscillations of r. Then we can consider only the
resonance in the relative distance oscillations.

For η = 0 we have equilibrium points as given in (27). Substituting y = r − re in (26),
assuming y small and using (27), we obtain

d2y

dt2
+ ω2

0[1 + 2νre + η cos(wf t)]y = −ω2
0reη cos(wf t). (29)

One can rewrite this expression as

d2y

dt2
+ ω2

0[1 + η cos(ωf t)]y = F0 cos(ωf t), (30)

where ω2
0 = ω2

0[1 + 2νre], η = η/(1 + 2νre) and F0 = −ω2
0reη. The solution for this

equation is

y(t) = yh + yp (31)

where yh and yp are respectively the homogeneous and particular solution to equation (30).
Using the standard approach [25] for the case of the parametric resonance where

ωf = 2ω0 + ε, we find the following solution to the homogeneous equation:

yh(t) = eσ t
[
a0 cos

[(
ω0 +

ε

2

)
t
]

+ b0 sin
[(

ω0 +
ε

2

)
t
]]

, (32)

with σ 2 = 1
4

[(
η̄ω0

2

)2 − ε2
]
, a0 and b0 being constants. In order to obtain the particular solution

we employ the method of variation of parameters and find

yp(t) = F0

2ω0

[
3ω0 cos(2ω0t) + σ sin(2ω0t)(

9ω2
0 + σ 2

) − ω0 cos(2ω0t) + σ sin(2ω0t)(
ω2

0 + σ 2
)

]
. (33)

Using the initial condition y(t = 0) = y0, dy/dt (t = 0) = 0, the constants a0 and b0 are
given by

a0 = y0 − F0

2

[
3(

9ω2
0 + σ 2

) − 1(
ω2

0 + σ 2
)
]
, (34)
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b0 = − σ

ω0

{
y0 − F0

2

[
1(

9ω2
0 + σ 2

) +
1(

ω2
0 + σ 2

)
]}

. (35)

We performed numerical simulations on the diverse approaches including the PDE in the
quasi-1D approximation. We used parameters ω0 = 2.93 × 10−3 and, ν = 0.2, r(t = 0) = 20
and η = 0.1. The PDE numerical simulations were made using the Crank–Nicolson algorithm
with initial profiles given by two solitons as given by equation (6).

We compared the numerical solutions of small amplitudes in the forced case
(equation (30)) to the ones obtained analytically with the variation of parameters method
equations (31)–(35). They showed remarkable agreement for small parameter η. We also
observed that the right-hand forcing term in equation (29) makes an enhancing of the amplitude
of the resonance as compared to the standard Mathieu equation (figure 5(a)), and causes
appearing of a second harmonic mode. This is in contrast with the standard Mathieu equation,
where we have a single harmonic mode. In figure 5(b) we present the solution to equation (30)
using the method of variation of parameters. In figure 5(c) we present the numerical solution
of the soliton–soliton parametric resonance (equation (26)). A comparison of figures 5(b)
and (c) shows remarkable agreement for small amplitudes. For growing amplitudes nonlinear
terms of equation (26) have the effect of increasing the growing rate. Figure 5(d) shows the
numerical solution of the PDE equation (2). The IST approach showed very good agreement
with PDE results. In figure 5(e) we present the results from figures 5(a)–(d) superimposed for
initial evolution. For longer times we observed that the shape of oscillations strongly deviates.
Note the appearance of the second harmonic mode, a distinct effect from the standard Mathieu
equation. In the main resonance case where ωf = ω0, there is not closed approximation for
the homogeneous solution of equation (30). To obtain an analytical approximation, we rewrite
this equation as

L̂y(t) = S(y, t), (36)

where L̂ ≡ d2/dt2 + ω2
0 and S ≡ [

F0 − ω2
0ηy(t)

]
cos(ω0t). In this form we can use Green’s

function standard iteration techniques [26]

y(n)(t) = y(0)(t) +
∫

G(t − τ)S(y(n−1)(τ ), τ ) dτ. (37)

For the operator L̂ the Green function is simply given by G(t − τ) = sin[ω0(t − τ)]/ω0.
Assuming y(t = 0) = y0 and dy/dt (t = 0) = 0 we have y(0) = y0 cos(ω0t) and up to second
iteration we finally get

y(2)(t) = y0

{
cos(ω0t) + η

[
1

3
cos(ω0t) +

1

6
cos(2ω0t) − 1

2

]
+ η2

[
−1

6
+

87

864
cos(ω0t)

+
1

18
cos(2ω0t) +

1

96
cos(3ω0t) +

5

24
ω0t sin(ω0t)

]}

+ F0

{
η

9ω2
0

[
cos(2ω0t) − cos(ω0t)

]
+

η

12ω0
t sin(2ω0t) +

1

2ω0
t sin(ω0t)

}
.

(38)

Our numerical studies showed remarkable agreement between the numerical solution of
equation (30) and the Green’s function approximation (38). In figure 6 we present
the comparison of the numerical calculations of equation (26) and the Green’s function
approximation from equation (38). Clearly the approximation is good for short times but breaks
down during the evolution. As the time evolves the amplitude increases and nonlinearity of
equation (26) starts to play its role. This causes the effect of typical modulation of resonance,
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Figure 5. Parametric resonance in soliton–soliton interaction with ω0 = 2.93 × 10−3, ν =
0.2, r(0) = re = 20, η = 0.1, case φ = π . (a) Numerical simulation of the Mathieu equation given
by equation (30) with F0 = 0. (b) Analytical approximation obtained for small amplitude (equation
(29)) using method of variation of parameters, equations (31)–(35). (c) Numerical simulation
results of equation (26). (d) PDE results from simulation in the quasi-1D limit of equation (2).
(e) results from figure 5(a) (dashed), (b) (solid), (c) (triangles), (d) (dots) superimposed for initial
stages.

as we can observe. Let us estimate the value of these effects for the experimental case of [2].
For ν = 0.2, re = 20 follows that ω̄0 = ω0

√
1 + 2νre = 3ω0, so the parametric resonance

occurs approximately at ωx = 2π × 19.2 Hz and the main resonance at 2π × 9.6 Hz.
The resonant oscillations can lead to splitting of the bisolitonic state to separated solitons.

Indeed, if the amplitude of oscillations of equation (34) becomes of order of the width of the
potential rm at the maximum Um, the bisoliton splits into two noninteracting solitons. The
length rm can be estimated from Etot = Um, i.e.

1
2ω2

0r
2
m = 32ν2(1 − e−2νrm). (39)
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Figure 6. Main resonance in soliton–soliton interaction with ω0 = 2.93 × 10−3, ν = 0.2, r0 =
20, η = 0.1. Dashed lines represent the analytical approximation obtained for small amplitude
(equation (29)) using Green’s function iterative method, equations (38). Solid line corresponds to
numerical simulation results of equation (26). Filled dots is the solution of PDE in the quasi-1D
regime, equation (2).

Thus rm ≈ 8ν/ω0. For the parameters of figure 4 it is rm ∼ 95. The maximum of amplitude
at the parametric resonance at time t = 6000 is Am < 1. The distortion of the bisoliton can
happen if Am > rm. So this condition cannot be satisfied. The same conclusion is valid also
for the main resonance case with Am � 10 (see figure 5). Thus we can conclude that the
bisoliton state in π -phase remains stable.

5. Conclusion

In conclusion, we have analysed the matter-wave soliton–soliton interactions in the elongated
trap under the time-dependent modulations of the trap in the longitudinal direction. We
developed the theory describing such interactions using the perturbation theory for solitons,
based on the inverse scattering transform and the variational approach. We show that it is
possible to obtain parametric and main resonances in the oscillations of the relative distance
of solitons. The cases of phase differences zero and π were considered. The analytical
predictions are confirmed by the numerical simulations of the full Gross–Pitaevskii equation
with the time-dependent trap. Future work can be the investigation of other regimes, in
particular, the dynamical chaos caused by the interaction of solitons in time-dependent trap
potential. The long-time evolution, when the interaction of solitons with emitted radiation
becomes important, is another case which requires consideration beyond the quasi-particle
picture used in this paper.
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Appendix A

Equations (15)–(18) can be alternatively obtained by a variational approach [10] to the averaged
Lagrangian

L =
∫ +∞

−∞
L(x, t) dx, (A.1)

where L is given by equation (8). Substituting (6) in (8) and then in (A.1) we obtain

L =
∑
n=1,2

8νnµnξn,t − 4νnδn,t − 8ν3
n

3
− 8νnµ

2
n +

16

3
ν3

n − 2ω2

[
π2

48νn

+ νnξ
2
n

]

+ 96ν2
1ν2 exp(−2νr) + 96ν1ν

2
2 exp(−2νr). (A.2)

Applying the Euler–Lagrange equations

∂L

∂qi

− d

dt

∂L

∂qi,t

= 0, (A.3)

where qi are the eight parameters ν1,2, µ1,2, δ1,2 and ξ1,2, we obtain equation (15)–(18).
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