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1. INTRODUCTION

In the last ten years in particular, Bose–Einstein
condensates (BECs) in vapors of alkali-metal atoms
have been under intensive experimental and theoretical
investigation. The first reports of BECs in the labora-
tory appeared in 1995 [1]. Among the interesting forms
of matter waves that can be produced in BECs are soli-
tons, nonlinear wavepackets that keep their shape dur-
ing propagation. They are formed due to the balance
between the dispersion (quantum pressure) and the
nonlinearity in the Gross–Pitaevskii equation (GPE).
As they are robust wavepackets under perturbations,
they could (due to their properties of stability) have
important technological applications, from atomic
interferometry to atom lasers.

Dark solitons occur when the two-body scattering
length (

 

a

 

s

 

) is positive (repulsive interaction). They
appear as holes in the background of the condensates
[2]. Bright matter wave solitons (BS) occur in BECs
when 

 

a

 

s

 

 < 0. They are harder to observe than dark soli-
tons (

 

a

 

s

 

 > 0) due to instabilities in two and three dimen-
sions (2D and 3D) [3, 4]. Such condensed systems are
unstable when the number of atoms 

 

N

 

 is larger than crit-
ical value 

 

N

 

c

 

 (e.g., 1500 to 6000 

 

7

 

Li atoms).
Here we report on our investigations of BS in BECs

with artificially induced local inhomogeneities in one
and two dimensions (1D and 2D), by changing the
space distribution of the condensate. This is possible
either by optical methods [5] (in which spatial variation
is achieved using detuned laser fields), or by Feshbach
resonance techniques (by applying an external mag-
netic field [6]). In our approach, we consider full
numerical and variational solutions of the static and
dynamic GPEs, as described in the next section. Our
description of solitary atomic waves considers numeri-

cal simulations of the GPE with delta-function spatial
inhomogeneity. In the case of 1D, the results are shown
to be supported by full numerical calculations in 3D [7].

2. THE BOGOLIUBOV 
AND GROSS–PITAEVSKII FORMALISMS

In his pioneering work of 1947 [8], Bogoliubov
introduced the mean field prescription of dilute Bose
gases: he separated the BECs’ contribution from the
bosonic field operator. For dilute systems, the interac-
tion term can be attributed only to binary collisions
(low energies) characterized by a single parameter: the

 

s

 

-wave scattering length 

 

a

 

s

 

. Following this prescription,
a lowest order theory for the excitations in the interact-
ing Bose gas is reached. If the corresponding hypothe-
sis is valid in the limit of zero temperature (all atoms in
the ground state), we need for the validity of the mean
field approach 

 

N

 

 

 

�

 

 1 and a scattering length much
smaller than the average distance between the atoms. If
an external harmonic trapping potential is included in
the mean field, we obtain the well-known Gross–Pitae-
vskii equation:

(1)
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Ψ ≡ Ψ

 

( , 

 

t

 

) is the wave function normalized to
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frequencies in the three spatial dimensions. A quasi-1D
regime is achieved when 
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—We report on investigations of the properties of bright solitons in Bose–Einstein condensates in the
presence of point-like spatial inhomogeneities, in one and two dimensions. By considering an analytical varia-
tional approach and full numerical simulations, we describe such processes due to interactions between the soli-
ton and the inhomogeneity as the trapping, reflection, and transmission of bright matter solitons. We also study
the critical number of particles as a function of the magnitude of the impurity.
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2.1. A 1D Model with Delta Nonlinear Inhomogeneity

 

For 

 

α ≡

 

 (

 

ω

 

3

 

/

 

ω

 

⊥

 

) 

 

�

 

 1, we can use the following

approximation: 
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( , 

 

t

 

) = 
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(

 

x
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Z

 

(

 

x

 

3
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), where 

 

R

 

(

 

x

 

1

 

,

 

x
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) 

 

≡

 

 

 

R

 

 satisfies the 2D harmonic oscillator equation.
Next, we can redefine 

 

Z

 

 (which is normalized to 

 

N

 

)
along with the variables, such that 

 

u

 

(

 

z

 

, 

 

τ

 

) 

 

≡

 

Z

 

(

 

x

 

3
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t

 

) , 

 

τ ≡ ω
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t

 

/2 and 

 

z

 

 

 

≡
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3

 

/

 

l

 

⊥

 

, where 

 

l

 

⊥

 

 

 

≡

 

. Integrating over transversal directions, we
obtain a 1D equation in 

 

z

 

 and 

 

τ

 

, for 

 

a

 

s

 

 < 0. The space
variation of 

 

a

 

s

 

 is given by a function f(z) with effective
strength �: as ≡ as0[1 + �f(z)]. The final 1D equation is

(2)

where f(z) = δ(z). The normalization is redefined as n0 ≡
4N |as0 |/l⊥. The validity of the 1D model is expected for

 � 8 and the system will collapse at n0 = 4k⊥ (k⊥ =
0.676). In realistic cases, i.e., quasi-1D (cigar-like)
traps, the formation and propagation of matter wave
solitons has already been observed in gases of 7Li
atoms [4] for the trap frequencies given by ω⊥ = 2π ×
625 Hz and ω3 = 2π × 3.2 Hz, with as tuned to as0 = –3a0

(here, a0 is the Bohr radius).
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For a variational dynamic description of solitons
perturbed by inhomogeneities, we consider the trial
function (normalized to n0 = 2aA2)

(3)

where A, a, ζ, φ, w, and b are time-dependent varia-
tional parameters. From the corresponding Lagrangian,
we can obtain [7] the coupled equations for a and ζ. As
in the Rice experiments [4], α = (ω3/ω⊥)2 = 2.6 × 10–5,
and we use α = 0 in Eq. (2).

A fixed point for the soliton center exists when ζ = 0;
the BS is trapped by a local variation of as. Positive
variation (� < 0) indicates the reflection of the soliton
by the inhomogeneity. The stationary width ac is given
by: ac = (8 – 3�n0)/(2n0).

A collapse occurs for � ≤ �c under the condition
d2〈z2〉/dτ2 < 0. Hence, we obtain

(4)

The critical limit for the solitonic ansatz [7] and
a  0 corresponds to �c = 8/(3n0).

The results of our simulations for a 1D model using
variational and full numerical approaches are presented
in Figs. 1–3. In Fig. 1, the variational approach is com-
pared with the full numerical results. The delta function
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Fig. 1. (a) Numerical (solid) and variational (dotted) results are compared for the width (a), width oscillation frequencies (ωa), and
center-of-mass oscillation frequencies (ωζ). They are shown as functions of �(n0/4). (b) Final velocity vf is shown (against initial
velocity vi) for � = 0.4 and n0 = 4. Full numerical results (dashed line) are compared with variational calculations (solid and dotted–
dashed lines). The dotted–dashed line is the variational results with a damping factor. All quantities in (a) and (b) are dimensionless.
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is simulated by a rectangular shape with base ∆z and
height 1/∆z, where ∆z is the grid step [9]. In Fig. 1a, we
show the stationary results. The fixed points for the
width (a), width oscillation frequencies (ωa) and the
center-of-mass oscillation frequencies (ωζ) are given as
functions of the strength of the nonlinear delta-like
impurity, �. We note that the variational ansatz starts to
fail near the critical point, where we must implement
corrections because of the radiation. In Fig. 1b, we
show the dynamic behavior of the final velocity (vf) as
function of the initial velocity (vi), for � = 0.4 and n0 =
4. In this case, we observe a region of initial velocity
where the attractive nonlinear impurity reflects the soli-
ton. Numerical simulations of the variational equations
reproduce qualitatively the numerical results. In the
numerical simulations, we obtained a window between
two trapped regions with soliton reflection. In the vari-
ational simulations, the window of reflection is found at
smaller initial velocities, but without a trapped region.
Near the reflection points, we have more complicated

dynamics. For 0.5 < vi < 1.0, there is noise, a behavior
that occurs in systems of variational equations. One
way of improving this situation is a variational
approach in which the radiative friction on the soliton
motion influences the impurity.

The dynamics of a BS matter-wave soliton interact-
ing with inhomogeneity shows different regimes of
propagation as we vary �. In Fig. 2, we show full
numerical simulations for the evolution of the center-
of-mass position (for � = 0.4 and n0 = 4) in Fig. 2a, and
the results for vf versus vi (for different strengths of �)
in Fig. 2b. We assume N |as0 |/l⊥ = n0/4 = 1, but this can
be rescaled to a value smaller than 0.676, consistent
with the BECs’ quasi-1D results [7]. In Figs. 2a and 2b,
as in Fig. 1b, we also observe a region of velocities in
which the soliton is reflected. Numerical results show
that there is for each � one window (interval) on the
velocity axis in which there is reflection of the soliton.
As shown in Fig. 2b, we observe different regimes for
the soliton interaction and nonlinear impurity: reflec-
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Fig. 2. (a) Numerical evolution of the center-of-mass position for � = 0.4, n0 = 4 and different values of vi . (b) Dimensionless numer-
ical dependence of rescaled number of atoms n0 (top frame), and final velocity vf (bottom frame), with respect to the initial velocity
vi . All the quantities in (a) and (b) are in dimensionless units.
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Fig. 3. (a) Critical numbers k⊥ = Nc |as0 |/l⊥, against the parameter �, for a delta-like impurity. (b) 3D numerical evolution of a soliton
reflecting at a delta-like impurity placed at z = 25, for 2πn0 = 5, initial velocity vi = 0.16 and � = 2, in dimensionless units.
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tion, transmission and trapping. The reflection process
occurs in the interval 0.42 < vi < 1.2.

3. FULL NUMERICAL 3D RESULTS

In order to check the validity of the 1D reduction
when using Dirac-delta nonlinear impurity, a full
numerical 3D calculation was performed in [7]. Here,
we demonstrate the relation between two critical limits
for the delta-like impurity in Fig. 3: k⊥(�) ≡ n0, max/4 and
the inhomogeneity parameter �c. For � = 0: k⊥ ≈ 0.676.
Plots of the soliton profile in Fig. 3b confirm that the
soliton reflects at the impurity, as in the 1D case.

4. TWO-DIMENSIONAL MODEL

The case of standing bright solitons in inhomoge-
neous condensed media has also been studied in two
dimensions, with nonlinear impurity. Here, we show
some results that include a nonlinear step-function
impurity (in the radial dimension) and harmonic trap-
ping. We multiply the cubic nonlinear term in the GPE
equation by f(ρ) = [1 – �θ(R – ρ)]. Thus, R is the posi-
tion of the impurity, and we consider solutions with the
form φ(ρ, t) = exp(iλt)ψ(ρ), where λ corresponds to the
soliton parameter in the dimensionless form of the cor-

responding stationary 2D GPE. In Fig. 4, we see the
behavior of the number of particles of the standing
bright solitons as a function of the magnitude of the
nonlinear impurity �, for R = 1.25. We realize that the
critical limit is strongly affected by the magnitude of
the impurity.

5. CONCLUSIONS
We have reported stationary and dynamic solutions

of BEC with attractive interactions in the presence of a
delta-like impurity in quasi-1D (and, with a step-like
impurity, in 2D). In the quasi-1D regime, the bright
matter wave solitons exhibit different behavior in their
interaction with the nonlinear impurity: the trapping,
transmission, and reflection of the soliton. For attrac-
tive nonlinear impurity, we verified the collapse of the
soliton if � > �c. The variational approach provides a
good description of the collapse and a good qualitative
description of the reflection and trapping dynamics.
Our full numerical 3D calculation supports the 1D
results. In the 2D case, we considered a nonlinear step
impurity and found that the critical number of atoms
depends strongly on the strength of the impurity.
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