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Classical Fluids with viscosity 

Navier(1827) & Stokes (1845) 
with viscosity η
        2nd viscosity ζ 

continuity 

momentum conservation 



JILA 2005 

Quantum Fluids-
BEC 



Carusotto et.al, PRL(2006) 

JILA  



We consider point obstacles  

Frisch et al PRL1992, subsonic 
Winiecki et al, PRL 1999 supersonic-> “vortex street” 



M=5, r=1   

Cutting in x we see dark solitons 



G.El, A.G., A.M.Kamchatnov 
PRL (2006) 



We consider now extended 
obstacles like a corner 

(wedge) 



Gross-Pitaevskii equation 

Dynamics of a dilute condensate is described 
by the Gross-Pitaevskii equation ~1961 

in dimensionless units. 
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Gross-Pitaevskii Eq. in hydrodynamic form for  
potential flow  
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And sound velocity for uniform solution is  
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cs = n No viscosity 
quantum pressure term 
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∇ × u = 0



With boundary conditions at infinity  
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n→1, u
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→ (M, 0) as   |r|  
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→∞

u.N 
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|S= 0,

and impenetrability condition at body surface S 



Now we consider in the hydrodynamic form a stationary system of  
equations for the density n(x,y) and two components of the velocity  
field u= (u(x,y),v(x,y)) 
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uy − vx = 0
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M >>1Supersonic flow 
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2 Ψ = 0

Stationary 2D NLS can be shown to  
asymptotically reduce to a 1D NLS 

Where T=x/M and Y=y 



Piston analogy in the problem of flow in dispersive shock 
flow of dispersive fluid past body 



The theory of DSWs is based on the study of a 
certain nonlinear free-boundary problem for the 
modulation (Whitham) equations—the so-called 
Gurevich-Pitaevskii problem (1973). 

A.V. Gurevich and L.P. Pitaesvkii, Sov. Phys. JETP, 38,291 (1974) 





Analytical theory of shocks 
The region of oscillations is presented as a 
modulated periodic wave: 

where 
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The parameters change 
slowly along the shock. Their evolution is 
described by the Whitham modulational equations 
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With characteristic velocities 
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L =
2K(m)

(λ4 − λ2)(λ3 − λ1)
and  wavelength 
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λi = λi(Y,T), i =1,2,3,4



For the corner, the relevant modulation 
solution has the form of a centered 
characteristic fan with 
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λ1 = −1, λ2 =1, λ4 =1+αM
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which explicitly takes the form 
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M=10, α=0.1 

Piston 1D see M. Ablowitz et al, PRL 2008.  



M=10, α=0.2 





M=10, α=0.3 





Extended wing  See arXiv:0906.2394 



Conclusions 

- Depending on corner aperture different patterns arise for supersonic  
flow past a corner. 

-Problem can be viewed as a Gurevich-Pitaevskii problem and is  
tractable through Whitham modulation theory   

-Remarkable agreement of theory and numerical simulations of 1D NLS 
stationary 2D NLS 

-Transition wave appearance for αΜ>2. 

-Results can also be applicable to more general forms of slender  
obstacles as a wing.  



Thank You ! 



M=5, r=5   

Increasing radius generate more dark solitons! 

Increasing the radius -> more solitons! 


