Basics of X-ray scattering by solutions

D.Svergun, EMBL-Hamburg

EMBO

General princples of solution SAXS

Small-angle scattering: experiment

Sample

Monochromatic beam

Wave vector $k, \quad k=2 \pi / \lambda$

Radiation sources:
X-ray generator $(\lambda=0.1-0.2 \mathrm{~nm})$
Synchrotron $(\lambda=0.03-0.35 \mathrm{~nm})$
Thermal neutrons ($\lambda=0.2-1 \mathrm{~nm}$)

Scattering by matter

- X-rays are scattered mostly by electrons
- Thermal neutrons are scattered mostly by nuclei
- Scattering amplitude from an ensemble of atoms $A(s)$ is the Fourier transform of the scattering length density distribution in the sample $\rho(\boldsymbol{r})$
- Experimentally, scattering intensity $I(s)=[A(s)]^{2}$ is measured.

Notations

The momentum transfer (i.e. the modulus of the scattering vector is denoted here as $\mathrm{s}=4 \pi \sin (\theta) / \lambda$

There are also different letters used, like

$$
Q=q=s=h=k=4 \pi \sin (\theta) / \lambda
$$

Sometimes, the variable $S=2 \sin \theta / \lambda=2 \pi$ s is used, and to add to the confusion, also denoted as " s ", or μ or yet another letter. Always check the definition for the momentum transfer in a paper

Small-angle scattering: contrast

$I_{\text {sample }}(S)$

$I_{\text {matrix }}(s)$

$I_{\text {particle }}(S)$

To obtain scattering from the particles, matrix scattering must be subtracted, which also permits to significantly reduce contribution from parasitic background (slits, sample holder etc)

Contrast $\Delta \rho=<\rho(\mathbf{r})-\rho_{s}>$, where ρ_{s} is the scattering density of the matrix, may be very small for biological samples

X-rays

neutrons

- X-rays: scattering factor increases with atomic number, no difference between H and D
- Neutrons: scattering factor is irregular, may be negative, huge difference between H and D

Element	H	D	C	N	0	P	S	Au
At. Weight	1	2	12	14	16	30	32	197
N electrons	1	1	6	7	8	15	16	79
$\mathrm{bx}_{\mathrm{x}} 10 \cdot 12 \mathrm{~cm}$	0.282	0.282	1.69	1.97	2.16	3.23	4.51	22.3
$\mathrm{b}_{\mathrm{N}, 10 \cdot 12} \mathrm{~cm}$	-0.374	0.667	0.665	0.940	0.580	0.510	0.280	0.760

Solution of particles

Solution of particles

For spherically symmetrical particles

$\mathbf{I}(\mathbf{c}, \mathbf{s})=\mathbf{I}(0, \mathrm{~s}) \times \mathbf{x}(\mathbf{c}, \mathrm{s})$

form factor structure factor of the particle of the solution

Still valid for globular particles though over a restricted s-range

Solution of particles

- 1 - monodispersity: identical particles
- 2 - size and shape polydispersity
- 3 -ideality : no intermolecular interactions
- 4 - non ideality : existence of interactions between particles

In the following, we make the double assumption 1 and 3

Ideal and monodisperse solution

$$
A(\mathbf{s})=\Im[\Delta \rho(\mathbf{r})]=\int_{V} \Delta \rho(\mathbf{r}) \exp (i \mathbf{s r}) d \mathbf{r}
$$

Particles in solution $=>$ thermal motion $\Rightarrow>$ particles have random orientations to X-ray beam. The sample is isotropic. Therefore, only the spherical average of the scattered intensity is experimentally accessible.

Ideality and monodispersity $\mathrm{I}(s)=\mathrm{Ni}_{1}(s)$

Crystal

solution

$\mathbf{I}(\mathbf{c}, \mathbf{s})=\mathbf{I}(0, \mathbf{s}) \mathbf{x} \mathbf{S}(\mathbf{c}, \mathbf{s})$

For an ideal crystal,
$\mathrm{I}(\mathrm{s})$ is the three-dimensional scattering intensity from the unit cell
$\mathrm{S}(\mathbf{s})$ is a sum of δ-functions along the directions of the reciprocal space lattice

$$
\mathbf{s}=\left(\mathrm{h} \mathbf{a}^{*}+\mathrm{k} \mathbf{b}^{*}+\mathrm{l}^{*}\right)
$$

For an ideal dilute solution, $\mathrm{I}(\mathrm{s})=\mathrm{I}(\mathrm{s})$ is the orientationally averaged intensity of the single particle
$S(s)$ is equal to unity

Crystal

solution

For an ideal crystal, measured signal is amplified into specific directions allowing measurements to high resolution $(d \approx \lambda)$

0

For an ideal dilute solution, I(s) is isotropic and concentrates around the primary beam (this is where the name "small-angle scattering" comes from): low resolution ($\mathrm{d} \gg \lambda$).

Relation between real and reciprocal space

Using the overall expression for the Fourier transformation one obtains for the spherically averaged single particle intensity
$I(s)=\left\langle A(\mathbf{s}) A^{*}(\mathbf{s})\right\rangle_{\Omega}=\left\langle\int_{V} \int_{V} \Delta \rho(\mathbf{r}) \Delta \rho\left(\mathbf{r}^{\prime}\right) \exp \left\{i \mathbf{s}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\right\} d \mathbf{r} d \mathbf{r}^{\prime}\right\rangle_{\Omega}$
or, taking into account that $\langle\exp (i s r)\rangle_{\Omega}=\sin (s r) / s r$ and integrating in spherical coordinates,

$$
I(s)=4 \pi \int_{0}^{D_{\max }} r^{2} \gamma(r) \frac{\sin s r}{s r} d r
$$

where

$$
\gamma(r)=\left\langle\int \Delta \rho(\mathbf{u}) \Delta \rho(\mathbf{u}+\mathbf{r}) d \mathbf{u}\right\rangle_{\omega}
$$

Distance distribution function

$$
p(r)=r^{2} \gamma(r)=r^{2} \gamma_{0}(r) V \rho^{2}
$$

$\gamma_{0}(\mathrm{r}):$ probability of finding a point at r from a given point
number of el. vol. $\mathrm{i} \propto \mathrm{V}$ - number of el. vol. $\mathrm{j} \propto 4 \pi \mathrm{r}^{2}$ number of pairs (i, j) separated by the distance $r \propto 4 \pi r^{2} V \gamma_{0}(r)=\left(4 \pi / \rho^{2}\right) p(r)$

$p(\mathrm{r})$

Debye formula

If the particle is described as a discrete sum of elementary scatterers,(e.g. atoms) with the atomic scattering factors $f_{i}(\mathrm{~s})$ the spherically averaged intensity is

$$
I(s)=\sum_{i=1}^{K} \sum_{j=1}^{K} f_{i}(s) f_{j}(s) \frac{\sin \left(s r_{i j}\right)}{s r_{i j}}
$$

$$
\text { where } r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|
$$

The Debye (1915) formula is widely employed for model calculations

Contribution of distances to the scattering pattern

In isotropic systems, each distance $\mathrm{d}=\mathrm{r}_{\mathrm{ij}}$ contributes a $\sin \mathrm{x} / \mathrm{x}$-like term to the intensity.

Large distances correspond to high frequencies and only contribute at low angles (i.e. at low resolution, where particle shape is seen)

Short distances correspond to low frequencies and contribute over a large angular range.
Clearly at high angles their contribution dominates the scattering pattern.

Small and large proteins: comparison

Guinier law

Near $s=0$ one can insert the McLaurin expansion $\sin (s r) / s r \approx 1-(s r)^{2} / 3!+\ldots$ into the equation for I(s) yielding

$$
I(s)=I(0)\left[1-\frac{1}{3} R_{g}^{2} s^{2}+O\left(s^{4}\right)\right] \cong I(0) \exp \left(-\frac{1}{3} R_{g}^{2} s^{2}\right)
$$

This is a classical formula derived by Andre Guinier (1938) in his first SAXS application (to defects in metals). The formula has two parameters, forward scattering and the radius of gyration

$$
\begin{gathered}
I(0)=\int_{V} \int_{V} \Delta \rho(\mathbf{r}) \Delta \rho\left(\mathbf{r}^{\prime}\right) d \mathbf{r} d \mathbf{r}^{\prime}=4 \pi \int_{0}^{D_{\max }} p(r) d r=(\Delta \rho)^{2} V^{2} \\
R_{g}=\int_{0}^{D_{\max }} r^{2} p(r) d r\left[2 \int_{0}^{D_{\max }} p(r) d r\right]^{-1}
\end{gathered}
$$

Intensity at the origin

$$
\begin{gathered}
i_{1}(0)=\int_{V_{\mathbf{r}}} \int_{V_{r^{\prime}}} \Delta \rho(\mathbf{r}) \Delta \rho\left(\mathbf{r}^{\prime}\right) d V_{\mathbf{r}} d V_{\mathbf{r}^{\prime}} \\
i_{1}(0)=\Delta m^{2}=\left(m-m_{0}\right)^{2}=\left[\frac{M}{N_{A}} \bar{v}_{P}\left(\rho-\rho_{0}\right)\right]^{2} \\
c=\frac{N M}{N_{A} V} \text { is the concentration (w/v), e.g. in mg.ml }{ }^{-1} \\
I(0)=\frac{c M V}{N_{A}}\left[\overline{v_{P}}\left(\rho-\rho_{0}\right)\right]^{2}
\end{gathered}
$$

Intensity at the origin

If : the concentration $\mathrm{c}(\mathrm{w} / \mathrm{v})$, the partial specific volume v_{P}, the intensity on an absolute scale, i.e. the number of incident photons
are known,
Then, the molecular weight of the particle can be determined from the value of the intensity at the origin

In practice, $M M$ can be determined from the data on relative scale by comparison with $\mathrm{I}(0)$ of a reference protein (e.g. BSA, lysozyme or cytochrom C)

Radius of gyration

$$
\text { Radius of gyration : } \quad R_{g}^{2}=\frac{\int_{V_{r}} \Delta \rho(\mathbf{r}) r^{2} d V_{\mathbf{r}}}{\int_{V_{r}} \Delta \rho(\mathbf{r}) d V_{\mathbf{r}}}
$$

R_{g} is the quadratic mean of distances to the center of mass weighted by the contrast of electron density.
R_{g} is an index of non sphericity.
For a given volume the smallest R_{g} is that of a sphere :

$$
R_{g}=\sqrt{\frac{3}{5}} R
$$

Ellipsoid of revolution (a, b) $R_{g}=\sqrt{\frac{2 a^{2}+b^{2}}{5}}$

Cylinder (D, H)

$$
R_{g}=\sqrt{\frac{D^{2}}{8}+\frac{H^{2}}{12}}
$$

Virial coefficient

In the case of moderate interactions, the intensity at the origin varies with concentration according to :

$$
\mathrm{I}(0, c)=\frac{\mathrm{I}(0)_{\text {ideal }}}{1+2 A_{2} M c+\ldots}
$$

Where A_{2} is the second virial coefficient which represents pair interactions and $\mathrm{I}(0)_{\text {ideal }}$ is \propto to c .
A_{2} is evaluated by performing experiments at various concentrations c .
A_{2} is \propto to the slope of $c / I(0, c)$ vs c.
To obtain $\mathrm{I}(0, \mathrm{~s})$, this extrapolation to infinite dilution is performed for different angles

Guinier plot example

The law is generally used under its \log form :

$$
\ln [\mathrm{I}(\mathrm{~s})]=\ln [\mathrm{I}(0)]-\left[\mathrm{sR}_{\mathrm{g}}\right]^{2} / 3
$$

A linear regression yields two parameters : $\mathrm{I}(0)$ (y -intercept) R_{g} from the slope

Validity range :
$0<s R_{g}<1.3$

Rods and platelets

In the case of very elongated particles, the radius of gyration of the cross-section can be derived using a similar representation, plotting this time sI(s) vs s^{2}

$$
s I(S) \cong I_{C}(0) \exp \left(-\frac{1}{2} R_{c}^{2} s^{2}\right)
$$

In the case of a platelet, a thickness parameter is derived from a plot of $\mathrm{s}^{2} \mathrm{I}(\mathrm{s})$ vs s^{2} :

$$
s^{2} I(s) \cong I_{T}(0) \exp \left(-R_{t}^{2} s^{2}\right)
$$

with

$$
R_{t}=T / \sqrt{12} \quad \mathrm{~T}: \text { thickness }
$$

nonorspersy

Distance distribution function

$$
p(r)=\frac{r^{2}}{2 \pi^{2}} \int_{0}^{\infty} s^{2} I(s) \frac{\sin s r}{s r} d r
$$

In theory, calculation of $\mathrm{p}(\mathrm{r})$ from $\mathrm{I}(\mathrm{s})$ is simple.
Problem : $\mathrm{I}(\mathrm{s})$ - is only known over $\left[\mathrm{s}_{\text {min }}, \mathrm{s}_{\text {max }}\right]$: truncation

- is affected by experimental errors and possible instrumental distorsions due to the beam-size and the bandwidth $\Delta \lambda / \lambda$ (neutrons)
\Rightarrow Fourier transform of incomplete and noisy data is an ill-posed problem.
Solution : Indirect Fourier Transform (suggested by O. Glatter, 1977). $p(r)$ is parameterized on $\left[0, D_{\text {max }}\right]$ by a linear combination of orthogonal functions, where $D_{\text {max }}$ is the particle diameter.

Implemented in several programs, including GNOM (part of ATSAS)

Distance distribution function

The radius of gyration and the intensity at the origin are derived from $\mathrm{p}(\mathrm{r})$ using the following expressions :

$$
R_{g}^{2}=\frac{\int_{0}^{D_{\max }} r^{2} p(r) d r}{2 \int_{0}^{D_{\max }} p(r) d r} \quad \text { and } \quad I(0)=4 \pi \int_{0}^{D_{\max }} p(r) d r
$$

This alternative estimate of R_{g} makes use of the whole scattering curve, and is much less sensitive to interactions or to the presence of a small fraction of oligomers.
Comparison of both estimates : useful cross-check

Porod invariant and volume

Following the Parseval theorem for Fourier transformations

$$
Q=\int_{0}^{\infty} s^{2} I(s) d s=2 \pi^{2} \int_{V}(\Delta \rho(\mathbf{r}))^{2} d \mathbf{r}
$$

\mathbf{Q} is called the Porod invariant, which is computed from the intensity but provides the mean square electron density contrast.

For homogeneous particles, $Q=2 \pi^{2}(\Delta \rho)^{2} V$, and, taking into account that $I(0)=(\Delta \rho)^{2} V^{2}$, the excluded volume of hydrated particle in solution (Porod volume) is

$$
V=2 \pi^{2} I(0) / Q
$$

The asymptotic regime : Porod law

Integrating the Fourier transformation for I(s) by parts and using that for particles with a sharp interface $\gamma^{\prime}\left(D_{\text {max }}\right)$ $=0$, one has

$$
I(s) \cong 8 \pi s^{-4} \gamma^{\prime}(0)+O_{1} s^{-3}+O_{2} s^{-4}+o\left(s^{-5}\right)
$$

where $\mathrm{O}_{1}, \mathrm{O}_{2}$ are oscillating trigonometric terms of the form $\sin \left(s D_{\max }\right)$. The main term responsible for the intensity decay at high angles is therefore proportional to s^{-4}, and this is known as Porod's law (1949). For homogeneous particles, $\gamma^{\prime}(0)$ is equal to $-(\Delta \rho)^{2} S / 4$, where S is the particle surface.

Kratky plot

A plot of $s^{2} I(s)$ vs s provides a sensitive means of monitoring the degree of compactness of a protein.

Globular particle : bell-shaped curve

Unfolded particle: plateau or increase at large s-values

Summary of model-independent information

$\mathrm{I}(0) / \mathrm{c}$, i.e. molecular mass (from Guinier plot or $p(r)$ function) Radius of gyration R_{g} (from Guinier plot or $p(r)$ function)

Radii of gyration of thickness or cross-section (anisometrc particles)

Second virial coefficient A_{2} (extrapolation to infinite dilution)
Maximum particle size $\mathrm{D}_{\text {max }}$ (from $p(r)$ function)
Particle volume V (from $I(0)$ and Porod invariant)
Specific surface S/V (from I(0), Porod invariant and asymptotics)
Globular or unfoded (From Kratky plot)

Small-angle scattering: experiment

Crystal

solution

- Thousands of reflections
- 3D, high resolution

- Data undersampled,

$$
\Delta S=2 \pi / D
$$

- A few Shannon channels
- 1D, low resolution

- Data oversampled, $\Delta \boldsymbol{s} \ll \pi / D$

Scattering from dilute macromolecular solutions (monodisperse systems)
+

$$
I(s)=4 \pi \int_{0}^{D} p(r) \frac{\sin s r}{s r} d r
$$

The scattering is proportional to that of a single particle averaged over all orientations, which allows one to determine size, shape and internal structure of the particle at low (1-10 nm) resolution.

The scattering is related to the shape (or low resolution structure)

Methods development at EMBL-Hamburg

Employed by over 8000 users worldwide

Data processing and manipulations Rigid body refinement

$A b$ initio modeling suite
Analysis of mixtures

Konarev, P.V., Petoukhov, M.V., Volkov, V.V. \& Svergun, D.I. (2006). J. Appl. Cryst. 39, 277

"Simple" monodisperse systems

Shape and conformational changes of macromolecules and complexes

Validation of high resolution models and oligomeric organization

Rigid body models of complexes using high resolution structures

Addition of missing fragments to high resolution models

Books on SAXS

" The origins" (no recent edition) : Small Angle Scattering of Xrays. A. Guinier and A. Fournet, (1955), in English, ed. Wiley, NY

Small-Angle X-ray Scattering: O. Glatter and O. Kratky (1982), Academic Press. PDF available on the Internet at http://physchem.kfunigraz.ac.at/sm/Software.htm

Structure Analysis by Small Angle X-ray and Neutron Scattering. L.A. Feigin and D.I. Svergun (1987), Plenum Press.

PDF available on the Internet at http://www.embl-
hamburg.de/Externallnfo/Research/Sax/reprints/feigin_svergun_ 1987.pdf

Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules. D.I,Svergun, M.H.J. Koch, P.A.Timmins, R.P. May (2013) Oxford University Press, London.

Recent reviews on solution SAS

Blanchet CE, Svergun DI (2013) Small-angle X-ray scattering on biological macromolecules and nanocomposites in solution. Annual Review of Physical Chemistry 64(1): 37-54.

Schneidman-Duhovny D, Kim S, Sali A. (2012) Integrative structural modeling with small angle X-ray scattering profiles. BMC Structural Biology 12(1):17.

Graewert MA, Svergun DI (2013) Impact and progress in small and wide angle X-ray scattering (SAXS and WAXS). Curr Opin Struct Biol 23: 748-754.

Rambo RP and Tainer JA (2013) Super-resolution in solution X-ray scattering and its applications to structural systems biology., Annu Rev Biophys. 42, 415-441

