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Abstract
We consider different processes leading to time symmetry breaking in a 
Bose–Einstein condensate. Our approach provides a global description of 
time symmetry breaking, based on the equations  of a thermal condensate. 
This includes quenching and expansion of the condensate, the Kibble–Zurek 
mechanism associated with the creation of vorticity, the dynamical Casimir 
effect and the formation of time crystals.
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1. Introduction

Time symmetry breaking has received considerable attention in recent years, after the sug-
gestion made by Wilczek [1] that spontaneous symmetry breaking could occur in quantum 
systems at the ground state, leading to the formation of a temporally periodic structure, the 
so-called ‘time crystal’. But it soon became clear that time symmetry breaking cannot occur 
spontaneously at thermal equilibrium, and can only be observed in systems out of equilibrium 
[2–6] . This was indeed verified in a quite recent experiment using ion traps [10]. The main 
purpose of the present work is to examine the problem of time crystallization, in the general 
context of time symmetry breaking processes in Bose–Einstein condensates (BECs). We will 
examine the problem taking into account the strong analogies between a time crystal con-
figuration and the dynamical Casimir (DC) effect [4, 7]. There is a considerable difference 
between ordinary (space) crystals and time crystals, because time is fundamentally different 
from space. In particular, we cannot travel backwards in time, and such asymmetry is an 
essential ingredient of temporal optics [11]. This asymmetry is also present in time-varying 
condensates.
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We propose here a global approach to time symmetry breaking in BECs, where temporal 
effects will be assumed as arbitrary and include, as particular cases, expansion and quench-
ing [8], as well as periodic oscillations of the condensate. In this approach, the Kibble–Zurek 
(KZ) mechanism for spontaneous vorticity creation [9] will appear as a natural manifestation 
of the quantum vacuum, which takes place during expansion or quenching. Other phenomena 
associated with a time-varying condensate have also been considered, such as the DC effect 
[7, 12]. Whereas time crystals, strongly connected with the DC effect, will appear as a par-
ticular aspect of temporally oscillating condensates. They are all consequences of a perturbed 
bosonic vacuum. In the context of a condensate, we mean a phonon vacuum, or more gener-
ally, a Bogoliubov–de Gennes (BdG) vacuum.

The structure of this paper is the following. In section 2 we formulate the basic equations of 
our model, which is based on the quantum description of the elementary excitations of a 
condensate. Generally speaking, these excitations are BdG modes, which can be defined in a 
variety of physical geometries. To be more specific, we examine in section 3 the case of cylin-
drical condensates, but other geometries such as unbounded or spherical media can equally 
be considered. In section 4 we derive the dispersion relation for BdG modes, valid for a time 
varying medium. It will be shown that the mode frequency will not evolve in time according to 
a simple adiabatic law, but will show a clear non-adiabatic response. This non-adiabatic prop-
erty scales with the inverse of the characteristic time scale of the medium, and only vanishes 
for infinitely slow processes.

The equations describing the temporal mode coupling, and determining the creation and 
annihilation of BdG quanta, will be described in section 5. This section specifies the concept 
of a sudden quenching, defines the corresponding Bogoliubov transformation, and gives the 
general solution for mode excitation in a non-stationary medium with an arbitrary temporal 
behavior. The case of an oscillating condensate will be treated in section 6, where generic 
time crystals will be defined, and a temporal Bragg condition for resonant scattering or reso-
nant phonon-pair emission will be established. This temporal Bragg’s law will indeed specify 
when the BdG vacuum will become unstable and the dynamical Casimir effect will emerge 
from a time crystal. This unstable situation has been associated with the phonon analogue of 
the DC effect [7]. In section 7, the case of a quenched or an expanding condensate is described 
with generality. We show that, if these processes occur on a fast time scale, generation of 
vorticity can be observed, which can be associated with the KZ mechanism. A scaling law 
for vorticity creation is derived, which can be compared with existing experiments. Finally, in 
section 8, we state some conclusions.

2. Basic equations

We start with the equations describing a BE condensate at finite temperature. We then apply 
them to the case of a time-varying density, and study the influence of this variation on the 
structure of the elementary excitations of the medium. In the present work we consider, for 
simplicity, that the coupling parameter g remains constant. But it should be noticed that the 
case of a time dependent g could be treated exactly in the same way. This means that the final 
results can easily be extended to include this situation.

In quite general conditions, the condensate can be described by a bosonic field operator 
ψ̂ ≡ ψ̂(r, t), which satisfies the Heisenberg equation

i!∂ψ̂
∂t

= ĥ0ψ̂ + gψ̂†ψ̂ψ̂, ĥ0 = −!2∇2

2m
+ V0(r)− µ, (1)
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where g is the coupling parameter, and ĥ0 is the single particle Hamiltonian. Here, µ is the 
chemical potential, V0(r) the confining potential and m the single atom mass. We can split the 

field operator in the usual way, as ψ̂ = Φ+ η̂, where 
〈
ψ̂
〉
= Φ is the mean field, and ⟨η̂⟩ = 0. 

This description is valid if we assume the condensate as a coherent superposition of states 
with different values of the total number of atoms N [13]. In this case, the averaging proce-
dure is valid, as long as the fraction of non-condensed atoms remains small. Replacing this in 
 equation (1) and using the mean field approximation, we obtain an evolution equation for the 
mean field Φ, as

i!∂Φ
∂t

=
[
ĥ0 + g(nc + 2nth)

]
Φ+ gnaΦ

∗, (2)

and another equation for the thermal operator η̂,

i!∂η̂
∂t

=
[
ĥ0 + 2g(nc + nth)

]
η̂ + g

(
Φ2 + na

)
η̂†. (3)

In these equations  we have used the condensate density nc = |Φ|2, the thermal density 
nth =

〈
η̂†η̂

〉
, and the anomalous density na = ⟨η̂η̂⟩. Using the Popov approximation, 

na ≃ 0 , and defining the total atomic density as n = nc + nth, we can rewrite equation (3) 
more simply as

i!∂η̂
∂t

=
[
ĥ0 + 2gn

]
η̂ + gΦ2η̂†. (4)

This will be the starting point of our model. The Popov approximation is valid for a finite 
temperature condensate, under small amplitude mechanical disturbances [14, 15] such that 
|na| ≪ |Φ2|, and will eventually break down for extreme quenching.

3. Elementary excitations

Our main purpose is to understand the evolution of the thermal operator η̂, as described by 
the above evolution equation, in the case of a non-stationary condensed background. For this 
purpose we define η̂ as a superposition of elementary excitations, parametrized by the index 
k, to be specified later. We write η̂ =

∑
k b̂k(r, t), where the mode operators satisfy the usual 

bosonic commutation relations 
[
b̂†k , b̂k′

]
= δ(k − k′), and 

[
b̂†k , b̂†

k′

]
=

[
b̂k, b̂k′

]
= 0. We focus 

on excitations propagating along the z-axis, in a cylindrical geometry. Other geometric con-
figurations, such as spherical or unbounded condensates can easily be described in a similar 
way. In the assumed geometry, we can use an explicit mode structure, of the form

b̂k(r, t) = b̂k(r⊥, t) exp(ikzz), b̂k(r⊥, t) =
∑

l,p

b̂klp(t)Flp(r⊥). (5)

The transverse mode structure is defined here with generality, as a superposition of orthogo-
nal Bessel modes Flp(r⊥) = clpJl(αlpr/a) exp(ilθ), where we have used polar coordinates 
r⊥ ≡ (r, θ). Here, the quantities αlp are the successive zeros of the Bessel function Jl, and a 
is the condensate radius. We also choose the normalization constants as clp = a

√
πJl+1(αlp). 

This choice of solution guarantees that the excitation amplitudes are zero at the boundary, 
r = a, but allow for the existence of an arbitrary number of nodes inside the medium. The 
internal products between different radial functions satisfy
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⟨Flp| Fl′p′⟩ ≡
∫ a

0
rdr

∫ 2π

0
dθF∗

lp(r⊥)Fl′p′(r⊥) = δll′δpp′ . (6)

It can easily be shown [18] that the normal modes defined by equation (5) satisfy the Helmholtz 
equation

(
∇2 + k2) b̂k(r, t) = 0, k2 = k2

⊥ + k2
z , (7)

where kz was the chosen value for the axial wavenumber, and the perpendicular wavenumber 
which emerges from the Bessel function solutions is defined as k⊥ = αlp/a. Replacing equa-
tions (5) and (7) in the evolution equation for the condensate operator (4), we obtain

i!∂b̂k

∂t
= Hkb̂k + gΦ2b̂†−k, −i!

∂b̂†
−k

∂t
= Hkb̂†−k + gΦ∗2b̂k, (8)

with

Hk =
!2k2

2m
+ V0(r) + 2gn − µ. (9)

If we now multiply these equation by F∗
l′p′, integrate in the perpendicular coordinate r⊥ and 

use the orthogonality condition (6), we obtain a new system of coupled mode equations, of 
the form

i!∂b̂q

∂t
= hqb̂q + Sqb̂†−q, −i!

∂b̂†−q

∂t
= hqb̂†

−q + S∗
q b̂q. (10)

Here, we have used a simplified mode notation, such that q ≡ (k, l, p), and −q ≡ (−k,−l, p), 
and defined the new quantities

hq ≡ ⟨Hq⟩ = ⟨Flp |Hk| Flp⟩ , Sq = g ⟨Flp
∣∣Φ2∣∣ Flp⟩ . (11)

Notice that, by assuming a specific radial structure of the modes, satisfying the Helmholtz 
equation (7) for a given wavenumber kz, we were able to reduce the mode equations to this 
simple form. The advantage of the new equations (10), is that they no longer depend on the 
radial coordinate r⊥, and for this reason they represent the global properties of the elementary 
excitations in the cylindrical condensate (see [19]).

4. BdG modes

The main properties of the elementary modes in steady-state condensates are well understood, 
but not under time symmetry breaking. The interest of the above operator equations is that they 
can be used to derive the mode dispersion relations, in the case of a  time-dependent conden-
sate. It will be seen that time dependence introduces a new contribution to mode  dispersion, 
which is clearly non-adiabatic. Validity conditions for the adiabatic approximation can also 
be established. In order to describe these effects, we take the time derivative of equation (10), 
and get

∂2b̂q

∂t2 +

[
ω2

q0 +
i
!
∂hq

∂t

]
b̂q +

i
!
∂Sq

∂t
b̂†−q = 0,

∂2b̂†
−q

∂t2 +

[
ω2

q0 −
i
!
∂hq

∂t

]
b̂†−q −

i
!
∂S∗

q

∂t
b̂q = 0,

 (12)
Here, we have defined a time-dependent frequency ωq0 ≡ ωq0(t), as
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ω2
q0 =

1
!2

[
h2

q − |Sq|2
]

. (13)

At this point, it is useful to consider a Thomas–Fermi density profile, such that gn = µ− V0(r). 
This density profile stays valid for a condensate with a large number of atoms, or a large cou-
pling parameter g, such that the kinetic energy can be neglected as compared with gn. The 
breakdown of this approximation near the boundary, at r = a, will not significantly change the 
radially averaged quantities used in the present model. The quantity hq will reduce to

hq =
!2k2

2m
+ gnq, nq = ⟨Flp| n |Flp⟩ . (14)

On the other hand, noting that Φ2 = nc exp(−iϕ0), where ϕ0 is a constant phase, we can also 
write

Sq = gncq exp(−iϕ0), ncq = ⟨Flp| nc |Flp⟩ . (15)

This means that, for a constant g, the time derivatives of hq and Sq in equation (12) are simply 
given by

∂hq

∂t
= g

∂nq

∂t
,

∂Sq

∂t
= g

∂ncq

∂t
e−iϕ0 . (16)

Using this in equation (12), we can rewrite them as

∂2b̂q

∂t2 + ω2
qb̂q +

ig
!
∂ncq

∂t
e−iϕ0 b̂†

−q = 0,
∂2b̂†−q

∂t2 + ω2
qb̂†−q −

ig
!
∂n∗

cq

∂t
eiϕ0 b̂q = 0,

 

(17)

where we have defined a modified mode frequency, ωq ≡ ωq(t), such that

ω2
q(t) = ω2

q0(t)±
g
!
∂nq

∂t
. (18)

In this expression, the plus sign (+) refers to the first of equation (17), and the minus sign (−) 
to the second equation. This sign difference is indeed irrelevant. This can be seen, using the 
following argument. If we consider the Fourier spectrum of the density oscillations, as

nq(t) =
∫

nq(Ω) exp(±iΩt)
dΩ
2π

, (19)

we should use, for consistency, the minus sign of this expression in the first of equation (17), 
and the plus sign in the second one. Taking this into account we can transform equation (18) into

ω2
q(t) = ω2

q0(t) +
g
!

∫
Ωnq(Ω)e−iΩt dΩ

2π
. (20)

We can now define the average frequency Ω̄, characterizing the characteristic time scale of the 
density variations, as

Ω̄ =
1

nq(t)

∫
Ωnq(Ω)e−iΩt dΩ

2π
, (21)

and defining the Bogoliubov speed for the specific q-mode, as c2
sq = gnq(t)/m, we can write 

equation (20) as

ω2
q(t) = ω2

q0(t) +
m
! Ω̄c2

sq. (22)

J T Mendonça and A Gammal J. Phys. A: Math. Theor. 50 (2017) 355501



6

This is the dispersion relation for the BdG q-mode in a time-varying condensate. It states 
one of the main properties of time symmetry breaking, the mode frequency shift. We can see 
that the mode frequency changes, not just due to the variation of the background density (this 
would explain the first term), but is also dependent on the typical time scale of the evolving 
density spectrum (second term). This frequency shift is clearly non-adiabatic. The adiabatic 
regime should only be valid for very slow processes, such that

Ω̄ ≪ !
m
ω2

q0

c2
sq

 (23)

In this limit, the dispersion relation (22) would then reduce to

ω2
q(t) ≃ ω2

q0(t) = k2c2
sq(t) +

!2k4

4m2 . (24)

The existence of a time dependent mode frequency is somewhat counter-intuitive, but it has 
been considered for a long time in theory and experiments (see, for instance, the recent work 
by Yang [20] and references therein).

5. Boson excitation

Apart from the frequency shift just described, the time symmetry breaking process also leads 
to pair emission from a boson vacuum. A similar process is known in quantum optics, and was 
analyzed for photons in time-varying optical media in [11]. We start from the mode coupled 
equation (17), and introduce a new pair of mode operators (âq, â†q), as

b̂q = âq exp [−iϕq(t)− iϕ0] , b̂†
−q = â†−q exp [+iϕq(t) + iϕ0] , (25)

with the phase function defined as

ϕq(t) =
∫ t

ωq(t′)dt′. (26)

We also assume that the new operators are nearly constant on the time scale 1/ωq, which is 
equivalent to state that

∣∣∣∣
∂

∂t

(
âq, â†

−q

)∣∣∣∣ ≪
∣∣∣ωq

(
âq, â†

−q

)∣∣∣ . (27)

Replacing this in equation (17), we can reduce them to the simple standard form

∂âq

∂t
= νq(t)â

†
−q,

∂â†
−q

∂t
= νq(t)∗âq, (28)

where we have introduced the quantity

νq(t) =
g

2!ωq

∂ncq

∂t
e2iϕq . (29)

These are the two basic equations associated with time symmetry breaking. They show that 
the two modes q and −q, propagating in opposite directions along the z-axis, and possessing 
orbital angular momenta of opposite signs, as determined by the poloidal quantum numbers l 
and −l, are coupled with each other due to the temporal variations of the medium. A similar 
process occurs in optics, as noted above. Integration of these equations leads to the following 
solution

J T Mendonça and A Gammal J. Phys. A: Math. Theor. 50 (2017) 355501
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âq(t) = cosh[rq(t)]âq(0) + sinh[rq(t)]â
†
−q(0),

â†−q(t) = cosh[rq(t)]â
†
−q(0) + sinh[rq(t)]âq(0) ,

 (30)

where we have defined the squeezing parameter

rq(t) =
∫ t

|νq(t′)| dt′. (31)

As an example, it is interesting to consider the particular case of a ‘sudden quenching’, often 
discussed in the literature [16], where the condensate density suddenly jumps from an initial 
value nq1 to a final value nq2. This case can be described by the simple law

ncq(t) = n1 +∆nqH(t), (32)

where ∆nq = n2 − n1 defines the density jump, and the Heaviside function H(t) deter-
mines the quench duration at t = 0. In this case, the squeezing parameter (31) reduces to 
rq(t) = (g/2!)∆nq and equation (30) take the form of a standard Bogoliubov transformation, 
relating the old mode operators âq1 = âq(t < 0), and â†

−q1 = â†−q(t < 0), to the new ones 
âq2 = âq(t ! 0), and â†

−q2 = â†−q(t ! 0). We obtain

âq2 = Aâq1 + Ba†−q1, â†−q2 = Aâ†−q1 + Baq1, (33)

with the coefficients A and B defined as

A = cosh
[ g

2!∆nq

]
, B = sinh

[ g
2!∆nq

]
. (34)

This satisfies the usual bosonic condition A2 − B2 = 1, which is characteristic of an hyper-
bolic transformation.

The above general solutions (30) describe the emission of boson-pairs from vacuum, due 
to the temporal changes of the medium. This general property is well understood in quantum 
optics, where it concerns the electromagnetic photon vacuum: here we are concerned with the 
BdG phonon vacuum associated with the elementary excitations of the Bose–Einstein con-
densate. These two different vacuum fields are distinct in what concerns the spin states of the 
elementary quanta, but their bosonic properties are very similar. We can define the quantum 
number operator for a given BdG mode, in the usual way, as Nq(t) = â†

q(t)âq(t). Using equa-
tion (30), we can then determine the number of quantum pairs associated with the modes q and 
−q, due to the temporal variation of the condensate. The result is

⟨Nq(t)⟩ = sinh2 [rq(t)] . (35)

It can be seen, from the definition of the parameter rq(t), given in equations (29)–(31), that the 
number of emitted quantum pairs is only significant if the temporal variations of the conden-
sate density ncq(t) occurs on a time scale of the order of 1/2ωq. We can now explore the above 
results in a couple of typical situations where such temporal variations become possible. One 
is the so-called ‘time-crystal’, where the density of the condensed atoms oscillates periodi-
cally in time. The other corresponds to an irreversible variation of the condensate density, 
which can be associated to two opposite processes: quenching and expansion.

6. Time crystals

Let us first focus on an oscillating condensate, which would lead to the formation of a time 
crystal. This temporal structure occurs in the presence of a periodic perturbation of the con-
densate density or, alternatively, of the coupling parameter g. These two cases are nearly 
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identical. We can define a time crystal, with generality, by assuming a temporal evolution of 
the form [4]

ncq(t) = ncq(0) [1 + ϵG(t) f (t)] , (36)

where ϵ = δnq/ncq(0) is the density modulation amplitude, f (t) = f (t + τc) is a periodic 
function with period τc, and G(t) is a slowly varying function which determines the shape of 
the crystal envelope and is non-zero for a duration T ≫ τc. The quantity T defines the size of 
the time crystal. We can use a Fourier series, and write

f (t) =
∞∑

−∞
fn exp(inωct), (37)

with ωc = 2π/τc, and arbitrary coefficients fn. Replacing this in equation (29), we obtain

νq(t) =
∞∑

−∞
νqn(t) exp [inωct − 2iϕq(t)] , (38)

with slowly varying coefficients determined by

νqn(t) = inϵfn
g

2!
ωc

ωq
G(t). (39)

To be specific, let us focus on a simple sinusoidal crystal, such that f (t) = cos(ωct), with a 
sharp envelope function G(t) = H(t)− H(t − T), where H(t) is Heaviside. In this case, we 
can write equation (22) in form

ω2
q(t) = ω2

q0 + k2c2
sq(0)ϵ cos(ωct). (40)

Here, the quantity ωq0  is a constant, given by

ω2
q0 = k2c2

sq(0) +
!2k4

4m2 + gncqωc. (41)

The adiabatic limit would correspond here to ωc → 0. Using equation (26), we can write the 
phase function as

ϕq(t) = ωq0t +
κ

2
sin(ωct), (42)

with

κ = ϵ
k2c2

sq(0)
ωcωp

∼ ϵ
ωq0

ωc
. (43)

Replacing this in equation (29), and developing the exponential in Bessel functions, we obtain

νq(t) = − gϵ
2!
ωc

ωq
sin(ωct)

∞∑

ν=−∞
Jν(κ) exp [i(2ωq0 + νωc)t] . (44)

Resonant contributions to the squeezing parameter rq(t) will arrive from the constant terms in 
this expansion. They occur for a given value of the integer ν, such that

ωq0 = (ν ± 1)
1
2
ωc. (45)

This is equivalent to choosing ν as the integer part of (2ωq0/ωc)∓ 1. It defines the Bragg 
condition for resonant temporal diffraction of the incoming BdG mode onto the time crystal. 

J T Mendonça and A Gammal J. Phys. A: Math. Theor. 50 (2017) 355501
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Replacing this resonance condition in equation  (35) we obtain, for the number of modes 
excited from vacuum by such a temporal structure

⟨Nq(t)⟩ = sinh2(ν̄qT), ν̄q =
gϵ
4!
ωc

ωq
. (46)

This result shows that, for short crystals, we get a quadratic growth for the number of modes, 
as ⟨Nq(t)⟩ ≃ ν̄2

q T2, proportional to the square of the crystal size. In contrast, for large crystals, 
we get an exponential growth, given by

⟨Nq(t)⟩ ≃
1
4
exp (2ν̄qT) . (47)

This number can be significant for T ≫ 1/2ν̄q . Such a vacuum instability associated with 
long time crystals can be seen as the phonon analogue of the ‘dynamical Casimir effect’ [7]. 
Similar time crystals can also be excited in non-condensed laser-cooled gas, as proposed else-
where [4]. This also has formal similarities with the parametric instabilities of the mean field 
as considered [17], although we consider here the quantum elementary excitations and not the 
mean field quantities. Of course, the exponential growth is only valid in the linear stages of 
the instability, and it will eventually saturate, due to condensate depletion, as briefly discussed 
in the conclusions.

7. Quenching

The previous section focused on periodic media, and in order to complete our analysis we 
need to consider now the irreversible processes, such as quenching (and expansion) of the 
condensate. If these processes take place on a time-scale τ, we can describe them using the 
following law

ncq(t) = ncq(0) +
∆nq

2
[1 + tanh(t/τ)] , (48)

The quenching process is illustrated in figure 1, where the frequency variation of a given 
BdG q-mode is represented as a function of time. This is distinct from what should be expected 
from a simple adiabatic process, as illustrated in the figure. For quenching, we use ∆nq > 0, and 
for very strong quenching we can eventually assume a large density variation, ∆nq ≫ ncq(0). 
In contrast, for an expansion process, we always have ∆nq < 0, and |∆nq| ≃ ncq(0) such that 
the density with eventuality tends asymptotically to zero for t → ∞. From the discussion in 
section 5, we can see that a significant excitation of a given BdG q-mode due to quenching 
or expansion only occurs for fast processes, such that τ ! 1/2ωq. In order to understand this 
mode excitation in more detail, let us replace equations (48) in (29)–(31). In this case, we have

f (t) ≡ ∂ncq

∂t
=

∆nq

2τ
sech2(t/τ). (49)

We then get

rq(t) =
∫ t

|νq(t′)| dt′ =
g∆nq

4!τ

∫ t ∣∣∣∣
1

ωq(t′)
sech2(t′/τ)e2iϕq(t′)

∣∣∣∣ dt′. (50)

It is useful to take the Fourier transform of the function f (t) =
∫

f (ω) exp(−iωt)dω/2π, 
defined in equation (49). The result is

J T Mendonça and A Gammal J. Phys. A: Math. Theor. 50 (2017) 355501
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f (ω) =
∆nq

2
√

2

√
πτ csch

(π
2
ωτ

)
. (51)

Replacing this in equation (50), we obtain

rq(t) =
g∆nq

4!ωq0

√
π

2
τ

∫ t

dt′
∫

dω
2π

csch
(π

2
ωτ

)
exp {−i[ωt′ − 2ϕq(t′)]} . (52)

It is obvious that the main contribution to the value of rq(t) is given by the frequency comp-
onent ω = 2ωq0. Extending the time integration to infinity, we can then define the asymptotic 
value for the squeezing parameter rq(τ) ≡ rq(t → ∞), as

rq(τ) =

√
π

2
gτ∆nq

2!ωq0
csch (πωq0τ) . (53)

It is well known that the hyperbolic function in this expression tends to zero with τωq0. This 
means that, for a slow quench duration scale such that τ ≫ 1/ωq0, the emission of BdG pho-
non pairs will be negligible. In contrast, of a short quench duration such that τ ≪ 1/ωq0, we 
can use the approximation csch(x) ≃ 1/x, which is valid for x ≪ 1, and obtain

rq(τ) = r0 ≡ ∆n
2
√

2π
gTq

! , (54)

with Tq = 1/ωq0. It is indeed independent of the quench duration τ, as long as τ ≪ 1/ωq0. For 
x ! 1, we could use the series expansion [21] csch(x) ≃ 1/x − x/6 + 7x3/360. For x ! 2 the 
first two terms could be used as a good approximation. We then get, for the asymptotic value

rq(τ) = r0

(
1 − π

6
τ 2

T2
q

)
. (55)

Here, the first term is the quantity r0 defined above, and the second term is the first correction 
associated with a finite quench duration. It is then clear that, by increasing the duration of the 
quenching or expansion process we can reduce the squeezing parameter and, as a consequence, 

Figure 1. Normalized mode frequency square X(t) (bold curve), with X(t) =
ωq(t)2/k2c2

sq(t) for a quenching process. We have used, for illustration, ∆n = 10 and 
k2 = mn(0)/! . The adiabatic value for the mode frequency is also shown (thin curve).
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the number of excited BdG quantum pairs. The dependence of the squeezing parameter with 
the process duration is represented in figure 2. At this point, we should note that each BdG 
mode, defined by the quantum numbers q ≡ (k, l, p), carries a finite amount of vorticity, with 
a z-component of the angular momentum given by !l . We are then led to the conclusion that 
quenching or expansion will introduce vorticity into the system. This is, in essence, the KZ 
mechanism. We can then define the ‘average vorticity’, or the average winding number, as

⟨L(t)⟩ =
∑

q

|l| ⟨Nq(t)⟩ , (56)

This quantity should be evaluated for times of the order (or larger than) τ. Noting that 
sinh(x) ≃ x, for x ! 1, we can easily estimate from the above expressions, the amount of 
vorticity created by quenching or expansion. We can then easily establish the following power 
law for the KZ mechanism

⟨L(t > τ)⟩ ∝ τα, α = 2 − β. (57)

Looking back at equation  (55) we can easily conclude that the parameter β is of the 
order but slightly larger than 2, which means that α will be a small and negative number. 
This is in qualitative agreement with recent expansion experiments by [22], where it was 
found that β = 2.2. We clearly see that the KZ mechanism is naturally included in the 
time symmetry breaking process associated with quenching or expansion, and that the 
corresponding power laws are consistent with the experiments. Another important point 
is related with the conservation of total angular momentum. This means that, for cylindri-
cally symmetric temporal perturbations, pairs of modes with equal amplitudes but oppo-
site winding numbers, l and −l, would be excited. They would equally contribute to the 
average vorticity, as defined by equation (56). Only for non-axially symmetric temporal 
perturbations, as imposed by external sources, would the total angular momentum of the 
condensate change.

Figure 2. Asymptotic value of the normalized squeezing parameter rq(τ)/r0, as 
a function of the quench duration τ (bold curve). The approximate expression of 
equation (55) is also shown for comparison.
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8. Conclusions

In this paper, we have described time symmetry breaking in Bose–Einstein condensates. 
Using a quantum description of BdG modes in a time-varying condensate, we have shown that 
counter-propagating modes become coupled due to the temporal variations of the medium. We 
have derived quantum operator equations describing the coupled mode oscillations, and estab-
lished the corresponding solutions. They show that, due to temporal variations, pairs of BdG 
quantum modes can be excited from vacuum. In this context, vacuum means absence of ther-
mal fluctuations, and corresponds to a condensate at zero temperature. Thermal effects will 
then be introduced by the time symmetry breaking process. But we cannot define a temper-
ature, because the fluctuation spectrum will depend on the actual evolution of the medium, and 
will be quite different from a thermal spectrum.

Two relevant cases were considered in detail. One corresponds to an oscillating condensate, 
where time crystals can be formed. A temporal Bragg condition was derived, corresponding to 
resonant scattering. This vacuum instability can lead to an exponential growth of BdG modes, 
which is a characteristic feature of the dynamical Casimir effect. The other corresponds to 
expansion or quenching, and leads to the excitation of finite vorticity. Such processes dis-
play the characteristic features of the Kibble–Zurek mechanism. We can then conclude that 
a variety of time symmetry breaking processes can be described by the same quantum mode 
equations. It should be noticed that, both the KZ mechanism and the dynamical Casimir effect 
have already been studied experimentally in condensates [7, 22]. Qualitative agreement with 
our model has already been noticed. We hope that the present work will provide a consist-
ent theoretical framework for the planning and understanding of future and more detailed 
experiments.

In the present work we have used some simplifying assumptions. The most relevant one is 
related with the condensate depletion, which was ignored for simplicity. It is obvious that, due 
to the possible excitation of BdG modes, a significant depletion will eventually occur. This is 
particularly true in the case of time crystals, if the dynamical Casimir instability is attained, 
because of the exponential growth of the resonate modes. Depletion will then contribute to the 
instability saturation, and can be described by a perturbative approach or, alternatively, by a 
numerical integration of the mode equations. This is a natural extension of the present model, 
which will be examined in a future publication.

Acknowledgments

We would like to thank CNPq and FAPESP for their financial support.

References

 [1] Wilczek F 2012 Phys. Rev. Lett. 109 160401
  Wilczek F 2013 Phys. Rev. Lett. 110 118902
 [2] Bruno P 2013 Phys. Rev. Lett. 110 118901
  Bruno P 2013 Phys. Rev. Lett. 111 070402
 [3] Nozières P 2013 Europhys. Lett. 103 57008
 [4] Mendonça J T and Dodonov V V 2014 J. R. Laser Res. 35 93
 [5] Watanabe H and Oshikawa M 2015 Phys. Rev. Lett. 114 251603
 [6] Sacha K 2015 Phys. Rev. A 91 033617
 [7] Jaskula J-C, Partridge G B, Bonneau M, Lopes R, Ruaudel J, Boiron D and Westbrook C I 2012 

Phys. Rev. Lett. 109 220401

J T Mendonça and A Gammal J. Phys. A: Math. Theor. 50 (2017) 355501



13

 [8] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2011 Rev. Mod. Phys. 83 863
 [9] del Campo A and Zurek W H 2014 Int. J. Mod. Phys. A 29 1430018
 [10] Zhang J et al 2017 Nature 543 217
 [11] Mendonça J T, Martins A M and Guerreiro A M 2003 Phys. Rev. A 68 043801
  Mendonça J T and Guerreiro A 2005 Phys. Rev. A 72 063805
 [12] Nation P D, Johansson J R, Blencowe M P and Nori F 2012 Rev. Mod. Phys. 84 1
 [13] Castin Y and Dum R 1998 Phys. Rev. A 57 3008
 [14] Griffin A 1996 Phys. Rev. B 53 9341
 [15] Dupuis N 2009 Phys. Rev. Lett. 102 190401
 [16] Kain B and Ling H Y 2014 Phys. Rev. A 90 063626
 [17] Abdullaev F Kh, Galimzyanov R M, Brtka M and Kraenkel R A 2004 J. Phys. B: At. Mol. Opt. Phys. 

37 3535
 [18] Mendonça J T, Gammal A and Haas F 2015 J. Phys. B: At. Mol. Opt. Phys. 48 065302
 [19] Mendonça J T 2016 J. Phys. A: Math. Theor. 49 275501
 [20] Yang Z 2015 J. Math. Phys. 56 032102
 [21] Abramovitz M and Stegun I A (ed) 1964 Handbook of Mathematical Functions (Washington, DC: 

National Bureau of Standards) ch 4
 [22] Corman L, Chomaz L, Bienaimé T, Desbuquois R, Weitenberg C, Nascimbène S, Dalibard J and 

Beugnon J 2014 Phys. Rev. Lett. 113 135302

J T Mendonça and A Gammal J. Phys. A: Math. Theor. 50 (2017) 355501


