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Abstract
The existence and stability of three-dimensional (3D) solitons, in cross-combined linear and
nonlinear optical lattices, are investigated. In particular, with a starting optical lattice (OL)
configuration such that it is linear in the x-direction and nonlinear in the y-direction, we
consider the z-direction either unconstrained (quasi-2D OL case) or with another linear OL
(full 3D case). We perform this study both analytically and numerically: analytically by a
variational approach based on a Gaussian ansatz for the soliton wavefunction and numerically
by relaxation methods and direct integrations of the corresponding Gross–Pitaevskii equation.
We conclude that, while 3D solitons in the quasi-2D OL case are always unstable, the addition
of another linear OL in the z-direction allows us to stabilize 3D solitons both for attractive and
repulsive mean interactions. From our results, we suggest the possible use of spatial
modulations of the nonlinearity in one of the directions as a tool for the management of stable
3D solitons.

1. Introduction

The investigation of solitons in media with periodically
modulated parameters is a recent topic attracting a great
deal of interest, in view of the possibilities of achieving
nonlinear wave management in concrete applications. In
particular, the existence of stable gap solitons has been
theoretically demonstrated and experimentally confirmed
in periodic nonlinear systems such as Bose–Einstein
condensates (BEC) in optical lattices and nonlinear optical
fibres with periodic modulations of the refraction index [1–3].

The treatment of stable multidimensional solitons in
nonlinear media, with periodic linear parameters, has been
done in [4]. In particular, two-dimensional (2D) solitons
have been investigated in [5–7], while the existence of three-
dimensional (3D) gap solitons has been reported in [8, 9]. In
[8], it has been shown that, while finite energy solitary waves

in shallow nonlinear periodic structures can be stable in the
whole band gap region in the 2D case, they can be stabilized
only in certain regions of the band gap in the 3D case.

The authors of [9] also considered the existence and
stability of families of 3D solitons in self-focusing cubic Kerr-
type optical media with an imprinted 2D harmonic transverse
modulation of the refractive index. Moreover, the existence
of 3D optical solitons, also called light bullets, in a 2D
spatial lattice with one temporal dimension, has been shown
in [10, 11]. Examples of these are: light bullets in radial
tandem structures [10] and in Bessel OLs with out-of-phase
modulation of a linear optical lattice (LOL) [11]. In [12], a
study considering collisions between solitons in the 3D self-
attractive BEC loaded into deep 2D OLs was reported. More
recently, in [13], the generation of stable 3D solitary waves
spatio-temporally localized in waveguide arrays (discrete light
bullets) has been demonstrated.
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Both in nonlinear optics and in the context of BEC, the
nonlinear parameters can be modulated in space and/or in time
quite easily [14, 15]. In optics, one usually deals with materials
having quadratic or cubic nonlinear susceptibilities, e.g. χ(2)

and χ(3). The variation of the nonlinearities can be achieved by
considering different approaches, including layered structures
with different values of the Kerr nonlinearity, photonic
crystals with the holes infiltrated by highly nonlinear liquids,
waveguide arrays with titanium doped LiNbO3 crystals, arrays
in glass written by a high intensity femtosecond laser [16]. In
BEC, the mean field nonlinearity coefficient is proportional
to the atomic scattering length [17] and can be tuned in space
by using the Feshbach resonance technique, considering either
the magnetic external field periodically varying in space [18]
or by using optically induced Feshbach resonances by standing
laser fields [19, 20].

In all of these contexts, periodic structures involving
modulations of the nonlinearity or combined modulations
of the linear and nonlinear parameters are possible [11, 21,
22]. In the following, we refer to nonlinear optical lattices
(NOL) as the cases where a lattice results from a pure periodic
modulation of the nonlinear parameter. This type of lattice,
recently realized in experiments [23], has been discussed in
several numerical and theoretical works, leading to interesting
new effects in the 1D case. In this respect we mention: stable
solitons in 1D optical lattice [24], matter-wave optical limiting
process and bistability [25], long-lived Bloch oscillations
[26] and dynamical localization [27] of gap solitons, linear
superpositions of matter waves [28], stable localized states in
random NOL [29], filter solitons [30], etc.

Theoretical and numerical investigations of 2D solitons
in the presence of 1D NOL have also been performed. In
particular, it has been shown that narrow solitons located at
the maxima of nonlinear smooth periodic modulations can
exist, but they have a region of stability so small that they can
be considered unstable for any practical purpose [31]. Sharp
1D NOL in the form of 1D stripes with box-shaped profiles
have been shown to support stable 2D solitons [32] in a narrow
window of number of atoms.

On the other hand, for smooth cross-combined 2D OLs
(e.g., 1D LOL in one direction and 1D NOL in the other),
it has been recently demonstrated that stable 2D solitons can
exist for a wide range of parameters [33]. The dynamics and
stability of solitons in 2D BEC were also investigated in [34]
for dissipative nonlinear optical lattices with a conservative
interaction in one of the spatial directions.

For binary mixtures in BEC, considering NOL, the soliton
stability has been explored in [35] for the 1D case, and
more recently in [36] for the 2D case. In the presence of
inhomogeneities and dissipative perturbations, the stability
and dynamics of matter-wave vortices are investigated in [37].
In contrast to the above 1D and 2D studies, the occurrence
of 3D solitons in continuous periodic structures, with spatial
variations of the nonlinearity, has been scarcely investigated.

The aim of this paper is to investigate, both analytically
and numerically, the existence and stability of matter-wave
3D solitons in crossed-combined OL systems consisting
of a smooth NOL in one direction, defined as the y-
direction, with one or two LOLs in the remaining two

perpendicular directions, defined as the x- and z-directions.
More precisely, by fixing that in the x-direction we have a
LOL, the z-direction is taken either as unconstrained (quasi-
2D cross-combined OL) or with another LOL (full 3D cross-
combined OL). In the former case, we study only the case of
attractive mean nonlinearities due to the fact that for repulsive
mean interactions localization is obviously impossible in the
unconstrained direction. In the latter case, both attractive and
repulsive mean nonlinearities are considered.

As a main result we show that while in the quasi-2D cross-
combined OLs (e.g. with a LOL and a NOL) 3D solitons
are always unstable, the addition of another linear OL in
the remaining orthogonal direction (z-direction) allows us
to stabilize 3D solitons not only for attractive but also for
repulsive interatomic mean interactions, a result which can
be of interest for practical applications. In this respect we
remark that while attractive 3D solitons are subjected to strong
collapses and to delocalizing transitions [38], no collapse exists
for repulsive interactions. The existence and stability of 3D
regions for solitons in parameter space can be much wider,
being limited only by delocalizing thresholds [38].

Our analytical considerations are based on a Gaussian
variational approach (VA), for the condensate wavefunction
with different parameters for the three directions, to account
for elliptical cross sections of the 3D solitons induced by the
lattice anisotropy. The results of the VA analysis are presented
in terms of the chemical potential and number of atoms
dependence, and compared with numerical results obtained by
relaxation methods [39] and by direct numerical integrations of
the Gross–Pitaevskii (GP) partial differential equation (PDE).
The stability properties of the 3D solitons are investigated both
by direct GPE time evolutions of the soliton profiles and by
VA, using the Vakhitov–Kolokolov (VK) criterion [40] for a
necessary condition for soliton stability6.

In our analysis, the cross-combined LOLs and NOL are
always arranged to have a minimum in the origin for all
corresponding spatial directions so that a Gaussian centred at
the origin can be a good ansatz for 3D solitons. Configurations
of the OLs in which a minimum of one type of OL
corresponds to a maximum of another are obviously possible,
but they induce distortions of the wavefunction in different
directions making a Gaussian VA inappropriate and leading to
instabilities. From numerical investigations of such ‘distorted’
waves, indeed, we have always found that they are unstable
and as such we have discarded them from this paper.

We finally remark that, in analogy with what has been
done for the 1D case, the stabilization of 3D solitons in the
presence of a NOL in one of the spatial directions introduces
the possibility of using the modulation of the scattering length
as a tool for 3D soliton management. We should note that
multidimensional solitons have not yet been created in real
experiments with BEC. Therefore, cross-combined linear and
nonlinear OLs could provide another alternate approach to
fulfil this task.

The paper is organized as follows. In section 2, we
introduce the model formalism and discuss the physical
implementation of 2D crossed linear and nonlinear lattices

6 See also a discussion on this criterion in [41, 42].
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using spatial modulations of the scattering length. In section 3,
we derive the VA equations for 3D BEC solitons with attractive
mean interaction in a quasi-2D cross-combined OL, with the
unconstrained z-direction. The results of this analysis are also
compared with direct calculations of the GP PDE. In section 4,
we consider 3D BEC solitons trapped in a cross-combined 2D
LOL and 1D NOL in the case of both attractive or repulsive
mean interatomic interactions. The VA equations, derived for
equal signs of the OLs strengths, are compared with direct
integrations of the GP equation. The parameter regions with
stable solitons are also verified by considering both the VK
criterion and direct time propagation of the GP solutions.
Finally, in section 5, we conclude with a summary of the main
results of this work.

2. Model equations and analysis

We take as a model for 3D BEC in cross-combined OLs in the
mean field approximation the following GP equation:

i�
∂ψ

∂t
= − �

2

2m
∇2ψ −

∑
ζ=x,z

�ζ cos(2kζ )ψ + g(y)|ψ |2ψ, (1)

where ψ ≡ ψ(r, t) is normalized to the number of atoms,
∇2 denotes the 3D Laplacian, m is the atomic mass and
�ζ cos(2k ζ ) is a LOL in the ζ -directions (ζ ≡ x, z), with
strength �ζ and lattice constant π/k (assumed to be identical
in both directions ζ ). The g(y) represents a NOL in the
y-direction with the following form:

g(y) = g0 + g1 cos(2κy), (2)

where g0 denotes the mean nonlinearity related to the mean
s-wave scattering length as0, given by g0 = 4π�

2as0/m for
3D, and g1 is the strength of a periodic modulation of the
nonlinearity in the y-direction having the period π/κ .

The spatial modulation of the nonlinear parameter
(interaction) can be produced either by spatially varying
magnetic fields near a Feshbach resonance or by optically
induced Feshbach resonances [19]. In the last case, the
scattering length is manipulated with a laser field tuned near
a photo association transition, e.g., close to the resonance of
one of the bound p levels of the excited molecules. Virtual
radiative transitions of a pair of interacting atoms to this level
can change the value and even reverse the sign of the scattering
length. It can be shown [19] that a periodic variation of the laser
field intensity in the y-direction, such as I(y) = I0 cos2(κy),
produces a periodic variation of the atomic scattering length of
the form as(y) = as0[1+αI/(δ+I)], where as0 is the scattering
length in the absence of light, δ is the frequency detuning
of the light from the resonance and α is a constant factor
[19, 24]. For weak intensities, e.g., when I0 � |δ|, we have
that the real part of the scattering length can be approximated
by as = as0+as1 cos2(κy), leading to a modulated nonlinearity
of essentially the same form as assumed in equation (2).

It is worthwhile to note that the creation of a NOL in
a BEC also implies some spontaneous emission loss which is
inherent in the optical Feshbach resonance technique. Here we
assume that such dissipative effects can be ignored, this being
possible if one uses laser fields detuned from the resonance

and of intensity sufficiently high [43]. (Similar conclusions
would also be reached for periodic variation of the scattering
length induced by the usual Feshbach resonance technique.)

In the following, we adopt dimensionless units by scaling
space and time variables such that the variables in (1)
are replaced according to t → (�/Er) t, r → r/k, with
Er ≡ �

2k2/2m being the recoil energy and r ≡ x, y, z. The
wavefunction is rescaled as ψ(r, t) → k3/2u(r, t), in terms of
which equation (1) acquires the form

i
∂u

∂t
= −∇2u − Vu − �|u|2u, (3)

where

V ≡ V (x, z) = εx cos(2x) + εz cos(2z) (4)

� ≡ �(y) = χ + γ cos(λy) (5)

denote the linear and nonlinear OLs, respectively. Considering
equations (1)–(3), we have the following definitions:

εζ ≡ �ζ/Er, χ ≡ g0k3/Er = −8πas0k,

λ ≡ 2κ/k, γ ≡ −g1k3/Er, (6)

with g1 being assumed as a free parameter.
For the stationary solutions corresponding to

equation (3), we redefine the above wavefunctions u(r, t) as
u(r, t) = U (x, y, z) eiμt , where μ is the chemical potential.
Therefore, the stationary equation for U is given by

μU + ∇2U + VU + �|U |2U = 0, (7)

from which the chemical potential and corresponding total
energy are, respectively, given by

μN =
∫

{|∇U |2 − V (x, z)U2 − �(y)U4} dx dy dz, (8)

E = 1

2

∫ {
|∇U |2 − V (x, z)U2 − �(y)

2
U4

}
dx dy dz. (9)

The integrations in the above and following expressions cover
the 3D phase space from −∞ to +∞.

2.1. Variational analysis

In order to develop a variational analysis of equations (7)–(9),
we consider the following ansatz:

U (x, y, z) = A e− 1
2 (ax2+by2+cz2 ), (10)

where a, b and c are the parameters controlling the widths of
the Gaussian in the three directions. We remark that this ansatz
assumes that the BEC density remains centred at the origin and
therefore is appropriate when the signs of the LOL ε and of
NOL γ are equal (both positive). For opposite signs, say ε > 0
and γ < 0, indeed, an origin-centred Gaussian ansatz is clearly
not good due to the different positions of the minima of LOL
and NOL in the x- and y-directions, respectively. This fact is
easily understood if one thinks that, while in the x-direction
the matter tends to localize around the origin at x = 0 (due to a
minimum of the LOL there), in the y-direction the NOL has a
maximum at y = 0 (the local interaction is repulsive) and the
matter tends to delocalize there. This leads to a distortion of
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the density in the xy-plane, which cannot be described by the
simple ansatz (10). From PDE simulations (as we mentioned
before), we found that such distorted solutions can exist, but
they are always unstable. Therefore, in the following we shall
restrict the VA to the case of ε > 0 and γ < 0, for which the
ansatz (10) is appropriate.

From (10), the normalized number of atoms is expressed
in terms of the variational parameters A, a, b and c:

N =
∫

U2 dx dy dz = A2π3/2

√
abc

. (11)

The stationary GP equation in (7) can be derived from the field
Lagrangian L, which is given by

2L =
∫ {

|∇U |2 − [μ + V (x, z)]U2 − �(y)

2
U4

}
dx dy dz.

(12)

By substituting the ansatz (10) into the above Lagrangian
and performing the integrations, in terms of the variational
parameters a, b, c and A, we obtain the following effective
Lagrangian:

Leff = A2π
3
2

4
√

abc

{
a + b + c − A2

2
√

2

[
χ + γ e− λ2

8b
]

−2(μ + εx e− 1
a + εz e− 1

c )

}
, (13)

with A2 being linked to the number of atoms by relation (11).
The above formalism with the corresponding variational

treatment refers to a more general study on the stability of
systems with crossed-combined linear and nonlinear optical
lattices. With respect to parameters, εx and εz, of the LOLs,
in the next two sections we consider two specific cases: (i)
εx ≡ ε with εz = 0, implying a cross-combined 1D LOL with
1D NOL; and (ii) εx ≡ εz ≡ ε, implying a cross-combined 2D
LOL with 1D NOL.

3. 3D solitons in cross-combined quasi-2D OLs

In this section we discuss the possibilities of the existence
of 3D solitons in cross-combined quasi-2D OLs, with no
constraints in the z-direction, e.g., we consider �z = 0 in
equation (1), corresponding to εz = 0 in equation (4). Our
attention will be concentrated only on the case of attractive
mean interactions, the only possibility one may think for
the existence of 3D solitons with one of the directions
unconstrained.

By considering εz = 0 and εx ≡ ε in equation (13),
an implicit relation between the chemical potential and the
number of atoms can be obtained from the corresponding
Euler–Lagrange equations for the parameters a, b, c and A.
Therefore, in terms of these variational parameters, we have
the following expressions for the chemical potential μ and for
the number of particles N, respectively:

μ = b

2
− a − ε

(
1 − 3

a

)
e− 1

a , (14)

N = 4π

√
2π

abc

a − 2ε
(
e− 1

a

)/
a

χ + γ e− λ2
8b

, (15)

where a, b and c satisfy the following transcendental equation:

1

b
+ λ2

4b2

γ e− λ2

8b

χ + γ e− λ2
8b

= 1

c
, (16)

with the parameter c being given by

c =
(

a − 2ε

a
e−1/a

)
. (17)

With the above, we can rewrite expression (15) for the number
of particles as

N = 4π

√
2πc

ab

1

χ + γ e− λ2
8b

. (18)

Obtained from the above equations, for different strengths
of the LOL in the x-direction (as shown inside the figure), with
the z-direction being unconstrained (εz = 0), in the top panel
of figure 1 we depict the resulting curves of 3D solitons in the
μ − N plane. As verified, no stable 3D solitons are predicted
to exist, according to the VK criterion, which predicts stability
for dμ/dN < 0 in the attractive case.

In the bottom panel of figure 1, we have compared one of
the VA curves (for εx = 3) with the corresponding one being
obtained from numerical simulations of the GP equation, from
where we observe a good quantitative agreement between
numerical and analytical results. The PDE simulations also
confirm the prediction of the VK criterion about the instability
of 3D solitons in this case.

In the next section, we consider the second case treated in
this work, with LOL in both x- and z-directions.

4. Solitons in cross-combined full 3D OLs

The result of the previous section obviously cannot be valid
for repulsive scattering lengths, with the z-direction being
fully unconstrained. However, for the repulsive case, we can
stabilize solitons by adding a linear OL in the z-direction.
Therefore, in this section we will follow the previous derived
equations, leading to the variational effective Lagrangian
(13), considering the specific symmetric LOL case, with
εx = εz ≡ ε. With such assumptions, for symmetry reasons,
the stationary soliton solutions will have equal widths in the
x-and z-directions, with the ansatz U having c = a. At the
end of this section, in our dynamical numerical simulations,
we also reduce the LOL strength in the z-direction in order to
have a more clear picture on the transition from a stable to an
unstable regime.

Following the same discussion in the previous section on
the validity of the Gaussian ansatz for 3D solitons in cross-
combined OLs, we also restrict here the signs of the two LOLs
and of the NOL to be the same (all positive). The effective
Lagrangian in this case is given by

Leff = π3/2A2

4a
√

b

{
2a + b − 2(μ + 2ε e−1/a)

− A2

2
√

2
(χ + γ e−λ2/8b)

}
, (19)
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Figure 1. The chemical potential μ is presented in terms of the
number of atoms N for 3D solitons in both panels, for crossed 1D
LOL (x-direction) with 1D NLOL (y-direction), without any
constraint in the third z-direction (εz = 0), considering attractive
mean two-body interactions (χ = 1). In the upper panel, we show
the VA results for several strengths of the LOL εx = ε, with other
parameters remaining fixed as given inside the frame. In the lower
panel, we present a comparison between the VA results for ε = 3
(dashed line) with PDE results (solid line).

with A2 being linked to the number of atoms by the relation

N = A2π3/2

a
√

b
.

In this case, we obtain the following relations for the chemical
potential and the number of atoms in terms of the variational
parameters:

μ = b

2
− a − 2ε

(
1 − 2

a

)
e−1/a, (20)

N = 4π

√
2π

b

1 − 2ε(e−1/a)/a2

χ + γ e−λ2/8b
. (21)
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μ
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N

-6

-5

-4

-3

-2

-1

0

μ

Figure 2. The chemical potential μ is presented in terms of the
number of atoms N, considering VA results (solid lines) for 3D
solitons in cross-combined 2D LOL and 1D NOL. In the upper
panel, we fix ε =3 and the attractive interaction χ = 1, varying the
NOL strength, such that, from left to right, γ = 3.0, 2.5, 2.0, 1.5,
1.0, 0.7, 0.5, respectively. The PDE calculations are represented by
the dotted curve for γ = 0.5 (other parameters are the same as in the
case of VA). In the lower panel, with fixed parameters ε =3 and
γ = 0.5, we consider several repulsive mean nonlinearity
interactions. From left to right we have χ = 0.0, −0.1, −0.2,
−0.25, −0.3, respectively. In this case, the PDE calculations are
represented by the dotted curve for χ = −0.2 (keeping the same
other parameters).

As in equations (16) and (17), the parameters a and b are
related by the following transcendental equation:

1

b
+ λ2

4b2

γ e− λ2

8b

χ + γ e− λ2
8b

= 1

a − (2ε/a) e−1/a
. (22)

In figure 2, we depict the resulting VA curves (continuous
lines) in the plane (μ − N) to consider the possible existence
of stable 3D solitons in cross-combined 2D LOL and 1D
NOL for both attractive and repulsive atomic interactions.
As we observe, in both cases there are branches of the
curves for which stable 3D solitons are predicted to exist by

5
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Figure 3. Upper panels: sections of the soliton profile as functions of one of the dimensions (with the other two fixed to zero) as obtained
from the VA (panel (a)) and from PDE simulation (panel (b)), for attractive mean nonlinearity χ = 1. For the NOL parameter we have γ =
0.5. The parameters of VA profiles are a = c = 2.11, b = 0.44, corresponding to N = 6.5 and μ = −2.07. The values of N and μ for the
PDE profiles are 5.84 and −2.07, respectively. Other parameters are fixed as in figure 2. Lower panels: the same as in the upper panels, but
for a repulsive mean nonlinearity with χ = −0.2. The parameters of the VA profiles (panel (c)) are a = c = 2.589, b = 2.035,
corresponding to μ = −2.5. The values of N and μ for the PDE profiles (panel (d)) are 40 and −2.5, respectively.

considering the VK criterion (dμ/dN < 0). For comparison
with the VA results (solid lines), we include in each panel
of figure 2 the results obtained from direct PDE calculations
showing numerically found stable solitons (dotted curves) for
specific samples of parameters. We remark that although for
repulsive interactions the VK criterion may not be indicative
of gap soliton stability (sometimes, indeed, stability may be
verified by an ‘anti-VK criterion’ dμ/dN > 0 [42]), for the
investigated cases we have always found a good agreement
between VK predictions and numerical results.

Typical sections of soliton profiles, for 3D solitons
obtained from VA, are depicted in the left panels of figure 3,
for attractive (panel (a)) and repulsive (panel (c)) mean
interactions. The corresponding soliton profiles, determined
by the relaxation method, are shown in the right panels ((b)
and (d)) of figure 3. We see that, while in the attractive
case the agreement is quite good also from a quantitative
point of view (see the upper panel of figure 2), for repulsive
mean interactions the agreement becomes more qualitative, at
least for the LOL and NOL parameters used. The observed
discrepancy may be due to the inaccuracy of the Gaussian
ansatz to describe the wavefunction of the condensate for larger
values of the strength of the LOL. In the case of repulsive
mean interactions and deep OLs, we have an unavoidable

splitting of the condensate due to tunnelling of the matter into
adjacent potential wells. In order to reduce the discrepancy
and to improve the validity of the Gaussian ansatz, one should
reduce the strength of the LOL as well as the strength of the
mean nonlinearity.

In figure 4, we show the performed direct numerical time
integrations of the GP equation for two specific points in
the numerical curve given in figure 2. The two points, for
μ = −2.5 (top panel, stable solution) and μ = −3.5 (bottom
panel, unstable solution), are close to the limit that defines
the stable/unstable region according to the VK criterion. The
numerical simulations shown in figure 4 confirm that for
μ = −2.5 we have a stable solution, whereas the solution
becomes unstable for μ = −3.5. In the bottom panel of
figure 4, one can see that immediately after the beginning of
the dynamics the wavefunction exhibits strong oscillations, in
contrast to the stable solution on the top panel, which remains
the same for very long time. In figures 4 and 5 the soliton
profiles in the different directions at each time have been
overlapped for graphical convenience. The x- and z-direction
profiles are identical, and the y-direction profile (affected by
the NOL) is slightly wider (one can clearly see this near the
±1.5 position). In this case, we have ε = 3.0, γ = 0.5 and
repulsive mean nonlinearity χ = − 0.2.
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Figure 4. The dynamics of the solitons corresponding to two
different regions of the lower panel of figure 2 (repulsive case). In
the upper panel, with μ = −2.5, we note the existence of a stable
solution. In the lower panel, with μ = −3.5, we observe that the
solution becomes unstable. In both cases we have ε =3.0, γ = 0.5
and χ = −0.2. The profile in the y-direction is slightly wider.
Results are shown in dimensionless units.

Next, in figure 5, we display another PDE numerical
simulation, where we can observe that the stability verified
in figure 4 can be lost just by decreasing the strength of one of
the linear OLs. In both the panels of figure 5 we have the same
parameters considered in the upper panel of figure 4, except
for the strength of the LOL in the z-direction, which is reduced
to εz = 2.5 in the upper panel and further to εz = 2.0 in the
lower panel. As shown, the stability still survives for εz = 2.5,
but completely disappears in a very short-time interval when
εz = 2.0 (in both the cases, we keep the strength in the x-
direction fixed, εx = 3.0). Similar results (not shown) are
also obtained for the repulsive case. In particular, for the case
εx = εz = 3.0 is depicted in the lower right panel of figure 2
(see dotted curve), we found that by decreasing the strength
of one of the LOL is enough to remove the observed stability.
We have also confirmed for the more stable cases that by
considering one direction unconstrained (εz = 0) no stable
solution can be found with exact PDE simulations.

Figure 5. Loss of stability due to the reduction of the linear
parameter in one direction, from εz = 3.0 (shown in the upper panel
of figure 4) to εz = 2.5 (upper panel of this figure) and εz = 2.0
(lower panel of this figure). As shown in the lower panel, the
instability occurs in a very short time interval. In both the cases we
have εx = 3.0, μ = −2.5, γ = 0.5 and χ = −0.2. The profiles in
the y-direction are slightly wider and the results are shown in
dimensionless units.

5. Conclusions

In this work we have investigated the existence of stable
3D solitons in cross-combined OLs, consisting of a LOL
and a NOL along the x- and y-directions, respectively, with
the z-direction either unconstrained (2D OL cross-combined
case) or with another linear OL along this direction (3D OL
cross-combined case). Two approaches are considered in our
analysis: one analytical, by a variational approach, and the
other by direct integration of the GP equation. The stability
of the solutions was checked by using the VK criterion (in
both the cases) and by the corresponding dynamical analysis,
with direct numerical time evolution of the soliton profiles.
Good agreement between the results obtained with VA and
direct PDE calculations has been shown to exist in general.
In particular, the agreement is improved for the 3D OL cross-
combined case when the strengths of the LOLs are not too
small.
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In conclusion, for the main result of our analysis, we
have shown that while in the 2D OL cross-combined case 3D
solitons are always unstable, in the full 3D OL cross-combined
case families of 3D solitons can exist and can be stable for both
attractive and repulsive interactions. In perspective of potential
applications, we should point out that besides providing an
alternate way to create stable solitons in three dimensions,
with cross-combined linear and nonlinear optical lattices (both
in BEC and nonlinear optics), these results could be useful
in practical applications, opening the possibility of managing
stable 3D solitons through spatial modulations of the scattering
length in one of the optical lattice directions.
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