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Abstract
We study the information entropy, order, disorder, and complexity for the two-
dimensional (2D) rotating and nonrotating Bose–Einstein condensates. The choice
of our system is a complete theoretical laboratory where the complexity is controlled
by the two-body contact interaction strength and the rotation frequency (Ω) of the
harmonic trap. The 2D nonrotating condensate shows the complexity of the category I
where the disorder-order transition is triggered by the interaction strength. In the rotat-
ing condensates, Ω is chosen as the disorder parameter when the interaction strength
is fixed. With respect to Ω , the complexity shifts between maximum and minimum
confirm the existence of category II complexity in the rotating condensate. Also, we
consider the interaction strength as the disorder parameter when Ω is unchanged and
complexity as a function of interaction strength exhibits category III complexity. The
present work also includes the calculation of upper bound and lower bound of entropy
for 2D quantum systems.

Keywords Bose–Einstein condensate · Vortex lattice · Information entropy

1 Introduction

Information theory plays an important role in the study of quantum systems, and it has
been successfully used in the analysis of electron densities in atoms and molecules [1–
7]. The information theoretical approach of entropy maximization was applied in
the analysis of Compton profiles and electron momentum distributions [1,2]. Also,
the interpretation of quantum information theory is essential for quantum optics and
condensed matter physics in the information transmission and computation [8]. The
measurements of the observable in quantum experiment help to analyze the quantum
systems and provide information about the state of the system. Importantly, mea-
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surements of entropy may help to identify the nonequilibrium state of the quantum
system.

The universal trend of the information entropy both for fermions and bosons is an
important observation for the study of quantum mechanical systems [9–11]. Infor-
mation entropy is calculated using one-body density in position space (Sr ) and in
momentum space (Sk) obeys same approximate functional form∼ a+bN 1/3, (where
N is the number of particles) universally for all types of quantum many-body sys-
tems. The net information entropy is also an increasing function of N . A simple
functional form S = a + b ln N holds approximately for atoms, nuclei, atomic
clusters, and correlated bosons in a trap. An important step in this direction is the
discovery of entropic uncertainty relation (EUR) for a three-dimensional (3D) system
Sr + Sk � 3(1+ ln π) ∼= 6.434 (� = 1) [4,6,12]. The lower limit is attained for the
noninteracting model when the distribution is Gaussian. A direct connection between
information entropy and kinetic energy for the quantum many-body system is also
established [13–15]. The total entropy is an increasing function of the number of par-
ticles in the system, independently of whether the system is an atom or a nucleus (as in
references [13,14]). Recently, it has been observed that for K-shell electrons of atoms
the total correlated entropy decreases as one goes along the periodic table [16,17].
However, order, disorder, and complexity are the three important measures which are
inherently connected with the measure of entropy. We note that concepts of entropy
and disorder are decoupled in most of the applications [9–11,18,19]. When entropy
increases, the Landsberg order parameter also increases and it was concluded that a
simultaneous increase in entropy and order can be explained if entropy and disorder
are decoupled [20,21]. It has also been explicitly shown for N trapped dipolar Bose
gas that order and entropy increase simultaneously [19]. The recent theoretical obser-
vation explained that the total entropy of the Bose gas in the 3D trap is associated with
the atoms in an excited state, although the entropy of particles in the ground state is
nonzero [22].

The investigation of rotating Bose–Einstein condensate is one of the central topics
in the study of ultracold quantum physics due to its interesting features that includes an
array of orderly aligned lattices in the quantum-Hall regime, Tkachenko oscillations
in the lowest Landau level, bending of vortex lines, and so on, which can be traced
by several review papers and books on the subject (as references in [23–27]). The
vortices are observed in experiments by quantum engineering techniques based on the
atom-field coupling [28], topological phasemanipulation [29],with syntheticmagnetic
fields [30], and rotating the magnetic trap [31,32]. Following the experiments, several
theoretical investigations have been made to study the properties of BECs including
vortices [33–38]. In particular, the imaginary-time propagation method is used to
generate the stationary vortices [33,34]. Also, studies beyond mean-field are carried
out to observe the fragmentation due to rotation using multi-configurational Hartree
method for bosons [39].

Complexity measure is an ideal quantity that can serve as an ideal parameter to
quantify the complex behavior of the different quantum systems. Various definitions
of complexity exist in the literature [18,40–42]. Two simple measures of complexity
are López-Ruiz, Mancini, and Calbet (LMC) [43] and Shiner, Davison, and Landsberg
(SDL) [18]. However, the alternative definition of complexity Γαβ is defined by SDL
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measurewhich is based on the appropriately defined notions of order and disorder [18].
SDL defined the order parameter Λ = 1 − S

Smax , where S is the total information
entropy and Smax is the maximum entropy accessible to the system. At Λ = 0, the
system is at maximum accessible entropy with S = Smax and exhibits completely
disordered state. On the other hand, Λ = 1 implies that the system is at zero entropy
and corresponds to perfect ordered state. For a realistic system, Λ lies between zero
and one. The SDL measure Γαβ broadly classifies three categories of complexity
as a function of the disorder [18,44]. In category I, complexity is a monotonically
increasing function of the disorder. In category II, complexity is minimum both for
perfect order and perfect disorder, exhibits a maximum at the intermediate level of
disorder. In the category III, complexity is a monotonically decreasing function of the
disorder. However, we follow the simplest measure of complexityΓ = Δ(1−Δ) [18].

In this paper, we calculate the information entropy, order, disorder, and complex-
ity for the 2D rotating and nonrotating BECs. The justification of the choices of the
system: (a) it is an experimentally achievable highly complex system; (b) the inter-
action strength and the rotational frequency can both serve as a disorder parameter;
and (c) higher rotation frequencies may lead to the system to nonequilibrium when
many vortices are developed. Thus, this is the most attractive test bed for studying
the complexity, order-disorder transition and also to justify whether the usual ther-
modynamical picture will be valid, i.e., order and entropy are coupled. It facilitates
two separate phases for the study of complexity. In the first phase, we considered the
nonrotating condensates and observed the category I complexity [18]. In the second
phase, the rotating condensate is considered to study the categories of complexity.
The rotation frequency is considered as a disorder parameter when the interaction
strength is unchanged. The complexity for rotating condensate is minimum both for
perfect order and disorder, also, it exhibits a hump at some critical rotation frequency
(Ω = Ωc) evidences a category II type of complexity in the rotating condensate [18].
For the rotating condensate with the fixed rotation frequency, complexity has now
decreased with increase in interaction strength (disorder parameter). It exhibits cate-
gory III complexity. For the study of the order-disorder transition, one must have all
the fundamental relations of entropy lower bound and upper bound on the conjugate
space in two dimensions. So, we derive the fundamental inequalities for 2D quantum
systems [14].

The paper is organized as follows. In Sect. 2, we present the 2D mean-field model
for the trapped BEC under rotation, numerical methods used and quantities of interest
of this work. In Sect. 3, we report entropy calculations for nonrotating and rotating
BECs by varying the contact interaction strength and rotation frequency. The paper is
concluded in Sect. 4.

2 Formalism

At ultra-low temperatures, the properties of a Bose–Einstein condensate of N atoms,
each of mass m, in rotating frame can be described by the 3D mean-field Gross–
Pitaevskii (GP) equation [23]. The external trapping potential is provided by the usual
3D harmonic trap, with a strong pancake-shaped symmetry and corresponding trap
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aspect ratio λ. A strong pancake-shaped trapping potential, Vtrap, is assumed to be of
the form

Vtrap(r) = 1

2
mω2

(
x2 + y2 + λ2z2

)
,

where m and ω are the mass and trap frequency, respectively.
For the present study, we assumed pancake-shaped trap with λ = 10. So, we reduce

the corresponding 3D equation to a two-dimensional form by assuming the usual
factorization of the wave function into the ground state of the transverse harmonic
oscillator trap and a 2D wave function

Ψ (r, t) ≡
(

λ

πl2

)1/4

exp

(−λz2

2l2

)
× Ψ2D(x, y, t). (1)

We performed the 2D reduction by introducing the above ansatz in the original 3D
GP formalism. The final equation is in a dimensionless form where energy in units
of �ω, length in units of l = √

�/(mω), and time is given in units of τ = 1/ω. The
dimensionless wave-function component is given by Ψ (x, y, τ ) ≡ lΨ2D(x, y, t). The
corresponding 2D equation

i
∂Ψ2D(x, y, t)

∂τ
=

[
−∇2

x,y

2
+ V (x, y) − ΩLz + g2D|Ψ2D(x, y, t)|2

]
Ψ2D(x, y, t),

(2)

where V (x, y) = x2+y2

2 is the external harmonic trap, g2D = 2
√
2πλ aN

l is the
contact interaction parameter, N is the number of atoms, and a is the two-body atomic
scattering length. Lz = −i�(x∂y − y∂x ) is the angular momentum operator with Ω

the corresponding rotation frequency (in units of ω).
For the numerical solution of Eq. (2), we employ the split-step Crank–Nicolson

method, as in Refs. [45–49]. The numerical simulations are carried out in imaginary-
time propagation on a grid with 512 points in x and y directions, spatial steps
Δx = Δy = 0.05 and time step Δt = 0.0005. The wave function is renormalized to∫
dxdy|Ψ2D|2 = 1 after each time step. Also, the convergence of vortex solution is

confirmed by conjugate gradient method [50,51]. As found appropriate for experimen-
tally realistic settings, in all the following analysis we are taking a pancake-shaped
trap, with an aspect ratio λ = 10.

To calculate the stationary vortex states, the different initial guesses are used to
check the convergence of ground state. From the tests, we choose the following suitable
initial conditions in the form of a combination of angular harmonics [52],

Ψ2D(x, y) =
L∑

m=0

(x + iy)m√
π(L + 1)m! exp

[
−

(
x2 + y2

2

)]
exp(i2πRm), (3)
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where Rm is a randomly generated number uniformly distributed between 0 and 1,
with arbitrary integer value for L that we have considered up to L = 100.

2.1 Quantities of Interest : Entropy, Order, Disorder, and Complexity

For a three-dimensional system with the continuous probability distribution n(r) in
position space, the information entropy Sr is calculated from

Sr = −
∫

n(r) ln n(r)dr, (4)

where n(r) = |Ψ (r)|2 is the one-body density and the corresponding information
entropy in momentum space Sk is calculated as

Sk = −
∫

n(k) ln n(k)dk, (5)

where n(k) = |Ψ̃ (k)|2 is the density distribution in the momentum space, and the
momentum spacewave function Ψ̃ (k), can be obtained from the fast Fourier transform
of Ψ (r). Both the density distributions n(r) and n(k) are normalized to one. In this
case, we calculate the entropy per particle until it becomes a constant that depends on
ln N [10]. It is noted that entropymeasures are scale invariant to the uniform change of
coordinates. For the 3D system, the rigorous relation between Sr and Sk , total kinetic
energy (T ) and mean square radius has been derived using the EUR and they are
presented by three inequalities [14,15],

Srmin � Sr � Srmax, (6)

Skmin � Sk � Skmax, (7)

Smin � S � Smax. (8)

To calculate the above measures in two dimensions, we need the expressions for the
lower and upper bounds like Srmin, Srmax, Srmin, Skmax, Smin, and Smax. We
follow the same technique from Ref. [14] and derive the upper and lower bound
entropy equations for 2D quantum system. These inequality relations are presented in
“Appendix,” which are further utilized for the calculation of orderΛ = 1− S

Smax , dis-

order Δ = S
Smax , and complexity Γ = Δ(1−Δ) for the 2D rotating and nonrotating

condensates.

3 Results

We start by considering a nonrotating case in Sect. 3.1. Next, we consider the rotating
BEC in Sect. 3.2. All the following results are produced with the parameter of the
contact interaction is given in units of the Bohr radius a0. Adopting the length unit
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as l = 1.89 × 104a0, the coordinates and densities are presented as dimensionless
quantities.

3.1 Nonrotating BECs (Category I Complexity)

We calculate the total entropy by solving the two-dimensional GP Eq. (2) numerically
for Ω = 0 and various interaction strengths g2D. The information entropy Sρ for the
2D density distribution is calculated by

Sρ = −
∫

n(ρ) ln n(ρ)dρ, (9)

where n(ρ) = |Ψ̃2D(ρ)|2 is the 2D density and ρ ≡ (x, y). Also, the corresponding
density in momentum space n(kρ) is obtained from the fast Fourier transform (FFT)
and Skρ is calculated by using Eq. (10) which is presented in “Appendix.” The total
entropy (S = Sρ + Skρ ), upper bound (Smax), and lower bound (Smin) are plotted in
Fig. 1. The total entropy S of the nonrotating condensate perfectly lies between Smax
and Smin throughout the entire range of interaction strength. The used inequality
expressions to calculate the upper and lower bounds of entropy are given in Appendix
Eq. (17). Further, we have calculated the corresponding Landsberg order parameter,
disorder, and complexity in Fig. 2. In Fig. 2a, order increases regarding the increase
in interaction strength g2D (which is proportional to a number of particles), and then
order saturates. We observe that order and entropy both increase as similar to the pre-
vious observation of 3D condensate [11,19]. This is confirming the explanation; order
and entropy are decoupled. The corresponding measure of disorder Δ = (1 − Λ)

smoothly decreases and attains a saturation. From the above observations, we con-
firm that adding more particles to the system manifests the transition from disorder
to order. In Fig. 2c, we plot the complexity Γ = Δ(1 − Δ), which increases mono-
tonically against disorder parameter g2D and then saturates. Thus, our nonrotating 2D
condensate exhibits complexity which belongs to the category I [18]. The saturation
of the order, disorder, and complexity at a critical interaction strength g2D ≈ 330 can
observe from Fig. 2.

3.2 Rotating BECs (Category II and III Complexity)

In this subsection,we consider the 2D rotatingBECs and investigate its entropy proper-
ties. The vortex lattice is obtained by propagating the 2DGP equation (2) in imaginary
timewith nonzero rotation frequencyΩ . Thefirst vortex appears at a rotation frequency
significantly larger than critical frequency Ωc for the vortex generation. The vortex
lattice is strongly influence by the trap symmetry [33,34]. In Fig. 3, we display the sta-
ble solutions for densities showing the triangular vortex lattice for different interaction
strengths and rotation frequencies. Saturation in the order, disorder, and complexity
is the effect of the external finite sized trap. This critical interaction strength crucially
depends on the trap aspect ratio.
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Fig. 1 Entropy measure of 2D
nonrotating condensate. Upper
(Smax) and lower (Smin) limits
of entropy are compared with
the total entropy (S) of the
condensate with respect to
interaction strengths. Smax, and
Smin are represented by solid
lines with solid stars, triangles,
and circles, respectively. All
quantities are dimensionless
(Color figure online)

100 200 300 400 500
g2D

4.25

4.35

4.45

4.55

4.65

4.75

S

Smax
S

Smin

100 200 300 400 500

g

0.025

0.030

0.035

0.040

0.045

Λ

100 200 300 400 500

g

0.955

0.960

0.965

0.970

0.975

Δ

100 200 300 400 500

g

0.025

0.030

0.035

0.040

0.045

Γ

(a) (b) (c)

Fig. 2 In the upper, middle and lower panels, a order, b disorder and c complexity of the nonrotating
condensate as a function of interaction strengths are shown, respectively. The smooth increase in Λ (a)
corresponding smooth decrease in Δ (b) and characterized category I complexity in (c). All quantities are
dimensionless (Color figure online)

In Fig. 4, we present the number of vortices (Nv), expectation value of the angular
momentum of the condensate (〈Lz〉), and total entropy (S) as a function of rotation
frequency. The Nv, 〈Lz〉, and S all three parameters are increasing with respect to Ω .
The number of vortices and angular momentum diverge at the rotation frequency near
to harmonic trap frequency [52]. But the entropy of the system increases smoothly as
shown in Fig. 4c. There is a discontinuous transition between Nv and 〈Lz〉 both jump
from zero to unity when the first vortex enters. Similarly, there is a jump in the total
entropy, when the first vortex enters into the condensate. The discontinuous increase
in Nv, 〈Lz〉 and S with increasing Ω is due to the dynamical entry of vortices into the
condensate. The angular momentum essentially depends on the number of vortices,
but it does not fluctuate significantly by the orientation of the condensate regarding the
vortex lattice arrangement and radius of the condensate. So, the angular momentum
does not increase significantly. But total entropy remains the same if the number of
vortices is unchanged. So, between some rotation frequencies, the angular momentum
goes up continuously, while entropy may rise discontinuously. This difference can be
visualized by comparing Fig. 4b, c. Next, the upper limit (Smax), lower limit (Smin) of
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Fig. 3 Two-dimensional density patterns, |Ψ2D|2 for the interaction parameters a–e g2D = 100, f–j g2D =
250, and k–o g2D = 500. The corresponding rotation frequency is mentioned in each density plot (Color
figure online)
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Fig. 4 a Number of vortices (Nv), b expectation value of angular momentum (〈Lz〉), and c total entropy
(S) with respect to rotation frequencyΩ for different interaction strengths g2D = 100, 250, and 500 (Color
figure online)

the entropy as a function ofΩ is shown in Fig. 5. Initially, total entropy S lies between
Smax and Smin, but it diverges sharply after the vortex enters into the condensate,
and becomes very close to the upper limit of Smax.

Further, we calculate Λ, Δ, and Γ for the rotating condensate. In the rotating
condensates, rotation frequency plays a crucial role in determining its properties.
The critical rotation frequency decreases monotonically with increasing interaction
strength for rotatingBECs in all trap geometries [33,34]. The critical rotation frequency
is gradually decreased with the increasing g2D and is calculated for the interaction
strengths, g2D = 100, 250, and 500 are, Ωc = 0.36, 0.26, and 0.24, respectively.
When the rotation frequency is significantly higher than Ωc, then more vortices enter
into the condensate and form a triangular lattice [23].We analyze the different regimes
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Fig. 5 Upper and lower limits of entropy compared with the total entropy of the system with respect to
rotation frequency for several interaction strengths a g2D = 100, b g2D = 250, and c g2D = 500. All
quantities are dimensionless (Color figure online)
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Fig. 6 a Order, b disorder and c complexity with respect to rotation frequency for the BECs with different
interaction strengths. All quantities are dimensionless (Color figure online)

regarding the rotation frequency where we have no vortex or single vortex or many
vortices. The order parameterΛ is plotted in Fig. 6a and shows that the order increases
smoothly and shows amaximumvalue at critical rotation frequencyΩ = Ωc. Further,
order decreases forΩ > Ωc. On the other hand, in Fig. 6b, disorder shows the reverse
behavior where disorder smoothly decreases tillΩc and then it increases forΩ > Ωc.
Here, this reverse behavior is due to the entry of a large number of vortices into the
condensate. They adjust themselves and fills up the disorder. From a thermodynamics
point of view, it is an unexpected result that entropy rises and disorder falls. However,
from our previous observation of nonrotating BEC, we conclude that till the critical
frequency, entropy, and disorder are decoupled. Increasing the rotation frequencyof the
trap above Ωc increases the dissipation in the condensate. Even though more vortices
enter at Ω > Ωc, they are not sufficient to fill up the disorder. So, disorder increases
smoothly as a function of Ω . It assumes that for Ω > Ωc, entropy and disorder are
now coupled and it satisfies the most usual view of thermodynamics. In addition, we
plot the complexity as a function of disorder parameter Ω in Fig. 6c. Complexity
is minimum both for highest ordered and highest disordered state, but never reach
to zero value. Thus, it is confirmed that the rotating condensate has been always
complex. Complexity is increased by larger rotation frequency when the condensate
has a large number of vortices. Similar to order, complexityΓ also exhibits amaximum

123



Journal of Low Temperature Physics

Fig. 7 Complexity as a function
of interaction strengths show the
complexity category III for the
rotation frequency Ω = 0.5,
which is greater than critical
rotation frequency for the
interaction strength regime
presented in this plot (Color
figure online)
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at Ωc. So it confirms that the complexity belongs to category II. Rotating condensates
exhibit two transitions. Disorder to order transition is continuing as far as Ω = Ωc.
In contrast, for Ω > Ωc the system shows a transition from order to disorder and
complexity goes down with increasing interaction strength. Eventually, we chose a
fixed rotation frequency Ω = 0.5, which is the frequency greater than Ωc of all the
interaction strengths considered. The complexity as a function of disorder parameter
g2D for a fixed Ω = 0.5 > Ωc is plotted in Fig. 7. The complexity decreases with
increasing interaction strength. We observe that the complexity goes down and the
system exhibits category III complexity. From the above observations, we confirm the
existence of category II and III complexities in rotating condensates.

4 Conclusion

In thiswork,we have presented the calculations of information entropy, order, disorder,
and complexity for 2D rotating and nonrotating Bose–Einstein condensates. In order
to study the order-disorder transition, we have derived the fundamental inequalities of
entropy lower bound and upper bound for 2D quantum systems. We compare the total
entropy of rotating and nonrotating 2D BECs with maximum and minimum limits of
entropy.We observe that our system is uniquewhich can exhibit all the three categories
of complexity regarding SDL measure. We have considered the two-body interaction
strength as a disorder parameter for the observations of complexity category in non-
rotating condensates. In general, complexity is a monotonically increasing function
regarding disorder parameter in a category I complexity. Similarly, in nonrotating
BECs, complexity increases with disorder parameter which confirms the existence of
the category I complexity.

Next, we have studied the entropy properties of rotating condensates. In the rotat-
ing condensates, we consider the rotation frequency as the disorder parameter when
the interaction strength is fixed. The complexity increases until the rotation frequency
reachesΩc (Ω = Ωc). Then, complexity starts to decrease forΩ > Ωc. The conden-
sate becomes more dissipative due to the fast rotation and the entry of many vortices

123



Journal of Low Temperature Physics

that decrease the complexity. This transition in maximum and minimum complexity
shows a hump at Ω = Ωc. Thus, the characteristic corresponding to category II
complexity is satisfied by the rotating condensate. Finally, the rotation frequency is
unchanged and the interaction strength is used as a disorder parameter. In this setting,
the complexity goes down regarding the increase in disorder parameter. This kind of
decreasing complexity with respect to disorder parameter characterizes the existence
of category III complexity in rotating condensates.

We believe that this is the first theoretical study performed in an experimentally
realizable system which exhibits all three categories of complexity. Calculation of the
complexity measure by LMC, their comparison with SDL and finding the value of α

and β [18] for three types of complexity will be the subject of the future studies.
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Appendix A: Connection Between Sr , Sk with the Total Kinetic Energy
T andMean Square Radius in Two Dimensions

Maximum value of entropy in momentum space for a 2D system is given by

Skρ ≤ −
∫

n(kρ) ln n(kρ)dkρ. (10)

Dimensionless form of kinetic energy T = 1
2

∫
n(kρ)k2ρdkρ , where k2ρ = k2x +k2y .

We consider the density in momentum space n(kρ) = A exp[−αk2ρ], where A is the
normalization constant andα is the appropriateLagrangemultiplier. Thenormalization
of the density with respect to N particles is defined

∫ −∞
∞ n(kρ)dkρ = N . It calculates

A = αN/π and α = N/2T . Thus, maximum value of the momentum space is given
by Eq. (10) and further simplification yields the maximum value of momentum space
entropy is given by

Skρ ≤ N (1 + ln π) − N ln N − N ln

(
N

2T

)
. (11)

For the 2D model, we get the following relation from refs. [12,13],

Sρ + Skρ ≥ 2N (1 + ln π) − 2N ln N . (12)

From relations (11) and (12), we obtain the lower bound to Sρ

Sρ ≥ N (1 + ln π) − N ln N + N ln

(
N

2T

)
. (13)
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Addition of (11) and (13) provides the lower bound to the excess information entropy
in the position space over that in the momentum space.

Sρ − Skρ ≥ 2N (1 + ln π) − 2N ln(2T ). (14)

Next, we calculate the upper as well as lower bounds for Sρ and Skρ , respectively, in
terms of 〈ρ2〉

Sρ ≤ N (1 + ln π) − 2N ln N + N ln
(
〈ρ2〉

)
, (15)

where ρ2 = x2 + y2 and

Skρ ≥ N (1 + ln π) + 2N ln N − N ln
(
〈ρ2〉

)
. (16)

For density distribution normalized to unity, the lower and upper limits of entropy in
two dimensions took the form

Sρmin = (1 + ln π) − ln (2T ) , (17a)

Sρmax = (1 + ln π) + ln
(
〈ρ2〉

)
, (17b)

Skρmin = (1 + ln π) − ln
(
〈ρ2〉

)
, (17c)

Skρmax = (1 + ln π) + ln (2T ) , (17d)

Smin = 2(1 + ln π), (17e)

Smax = 2(1 + ln π) + ln
(
2〈ρ2〉T

)
. (17f)
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