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In the framework of the Gross-Pitaevskii mean field approach, it is shown that the supersonic flow of a
Bose-Einstein condensate can support a new type of pattern—an oblique dark soliton. The corresponding
exact solution of the Gross-Pitaevskii equation is obtained. It is demonstrated by numerical simulations
that oblique solitons can be generated by an obstacle inserted into the flow.
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Introduction.—It is known that the nonlinear and dis-
persive properties of a Bose-Einstein condensate (BEC)
can lead to the formation of various nonlinear structures
(see, e.g., [1]). Until recently, most research has been
focused on experimentally observed vortices and bright
and dark solitons. Furthermore, the formation of dispersive
shock waves in BECs with repulsive interactions between
atoms was considered theoretically in Refs. [2,3] and
studied experimentally in rotating [4] and nonrotating [5]
condensates, where it was shown that dispersive shocks are
generated as a result of the evolution of large disturbances
in the BEC. However, another important type of nonlinear
structure, namely, a spatial dark soliton, can also be real-
ized in a BEC. The first experimental evidence of their
generation has recently appeared [6]. In fact, the existence
of oblique spatial solitons in a BEC has a natural physical
basis if the Cherenkov generation of dispersive sound
waves by a small obstacle in the supersonic flow of a
BEC is considered and the effect of increasing the size of
the obstacle (i.e., the amplitude of the waves) is deter-
mined. Evidently, along with dispersion, nonlinear effects
become equally important at finite distances from the
obstacle, so that the Cherenkov cone breaks up into a
spatial structure consisting of one or several dark solitons.
Such a structure represents the dispersive analog of the
well-known steady spatial shock generated in the super-
sonic flow of a viscous compressible fluid past an obstacle.
In this sense, it is the spatial counterpart of the one-
dimensional expanding dispersive shock [2–5] generated
in the evolution of large disturbances in a BEC. In the
simplest case, the nonlinear wave structure would consist
of a single spatial dark soliton given by a steady solution of
the equations governing the BEC flow. Motivated by this
physical consideration and the results of experiments [6],
in this Letter we shall develop the theory of spatial dark
solitons in the framework of the Gross-Pitaevskii (GP)
mean field approach.

Basic equations.—The dynamics of a BEC is described
to a good approximation by the GP equation [1]
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where  �r� is the condensate order parameter and g is an
effective coupling constant, with g � 4�@2as=m, as being
the s-wave scattering length and m the atomic mass. Here
V�r� denotes the potential of the external forces acting on
the condensate, for example, the confining potential of the
trap and/or the potential arising due to the presence of an
obstacle inside the BEC. When the ‘‘obstacle’’ is formed
by a laser beam and the flow occurs due to the free two-
dimensional expansion of the BEC, the trap potential
should be set equal to zero for the free expansion of a
BEC, and far enough from the obstacle we can neglect the
obstacle potential as well. Also, we are interested in steady
flows, that is, we suppose that the parameters of the flow
change on a time scale much slower than the transient time
scale for the establishment of the wave pattern of interest.
To this end, we seek solutions of Eq. (1) with V�r� � 0 of
the form
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where n�r� is the density of atoms in the BEC, u�r� denotes
its velocity field, and � is the chemical potential. It is now
convenient to introduce the dimensionless variables ~r �
r=

���
2
p
�, ~n � n=n0, ~u � u=cs, where n0 is a characteristic

density of atoms, equal to their density at infinity, � �
@=

���������������
2mn0g
p

is the healing length, and cs � @=
���
2
p
m� is the

sound velocity in a BEC of density n0. Substituting Eq. (2)
into (1) and separating real and imaginary parts, we obtain
a system of equations for the density n�x; y� and the two
components of the velocity field u � �u�x; y�; v�x; y��,
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y
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(3)

where we have omitted tildes for convenience. If we re-
strict our consideration to the vortices-free potential flows
with vanishing curl of the velocity field,
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 uy � vx � 0; (4)

then the second and third equations in (3) can be integrated
once to give a generalization of the Bernoulli theorem to
dispersive 2D hydrodynamics:
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4n
�nxx � nyy� � const: (5)

Equations (4) and (5) and the first equation of (3) comprise
the system governing the BEC potential flow.

Our aim now is to find the solution of this system under
the conditions that the BEC flow is uniform at infinity

 n � 1; u � M; v � 0 at jxj ! 1; (6)

whereM denotes the ratio of the asymptotic velocity of the
flow to the sound velocity, i.e., the Mach number.

Oblique dark soliton solution.—Let us seek a solution of
the form n � n���, u � u���, v � v���, where � � x�
ay and a denotes the slope of the soliton center location
with the y axis. Substitution of this ansatz into (4) and the
first equation of (3), followed by a simple integration,
yields expressions for the velocity components in terms
of the density

 u �
M�1� a2n�

�1� a2�n
; v � �

aM�1� n�

�1� a2�n
; (7)

where the integration constants were chosen according to
condition (6). Then substitution of (7) into (5), with a
proper choice of the constant in the right-hand side, leads
to the equation
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where

 p � M2=�1� a2�: (9)

It is easily checked that Eq. (8) has the integral
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where, again, the integration constant is chosen in accor-
dance with condition (6). Simple integration of this equa-
tion finally yields the desired solution in the form of a dark
soliton for the density
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The velocity components can then be found by substitution
of this solution into Eqs. (7). The inverse half-width of the
soliton in the x direction is

 � � 2

��������������
1� p

1� a2

s
: (12)

Thus formulas (11) and (12) give the exact dark spatial
soliton solution of the GP equation. We shall call it
‘‘oblique’’ because it is always inclined with respect to
the direction of the supersonic flow. Numerical solutions
below show that such solutions are stable for M> 1.

Small amplitude Korteweg–de Vries (KdV) limit.—As is
clear from (11), the small amplitude limit is achieved when
1� p� 1. Then the parameters a and p can be expressed
in terms of � and M from Eqs. (9) and (12) as
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����������������
M2 � 1

p
�

M4�2

8
����������������
M2 � 1
p ; 1� p 	

1

4
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The density profile in this limit becomes then the familiar
KdV soliton

 n 	 1�
M2�2

4cosh2���x� ay�=2�
; (14)

where �� 1=M.
Note that the slope a �

����������������
M2 � 1
p

corresponds exactly to
the Cherenkov cone, so that in its vicinity the small am-
plitude solitons are located inside it. This approximation
corresponds to the KdV limit of the potential-free GP
equations (3). Indeed, if we assume the series expansions
("� 1)

 n� 1�"n1� . . . ; u�M�"u1� . . . ; v�"v1� . . .

(15)

and introduce the scaling of the independent variables � �
"1=2�x� ay�, � � "3=2y, then standard reductive perturba-
tion theory leads to the KdV equation for the density
disturbance n1

 @�n1 �
3M2

2
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8
����������������
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p @3
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(16)

with the well-known soliton solution of this equation
equivalent to (13) and (14).

Nonlinear Schrödinger (NLS) equation limit.—Another
important limit corresponds to large slopes a2 
 1. For
this limit, we introduce the parameter � as p 	 M2=a2 �
�2, that is, a � �M=�. The soliton solution (11) can then
be approximated as

 n 	 1�
1� �2

cosh2�
���������������
1� �2
p

�y� �x=M��
: (17)

This is exactly the solution n � j�j2 of the NLS equation

 i�T ��YY � 2j�j2� � 0 (18)

for the complex variable � �
���
n
p

exp�i
R
Y v�Y0; t�dY0�,

where T � x=2M and Y � y. This equation was derived
in Ref. [7] from the GP equations (3) for the highly super-
sonic (M
 1) flow of a BEC past a slender body.
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Generation of oblique solitons in a BEC.—Let us now
consider the supersonic flow of a BEC past an obstacle. If
the obstacle is small (e.g., an impurity), then linear sound
waves are generated at finite distances which form a
Cherenkov cone [8]. Large obstacles generate spatial dis-
persive shocks, which can be viewed as trains of interacting
dark spatial solitons inside the Cherenkov cone. The theory
of the generation of spatial dispersive shocks has been
developed in much detail for supersonic flows past a slen-
der body when such a flow can be described by the KdV
equation [9]. An analogous theory for the NLS equation
case was developed in Ref. [7]. However, in real experi-
ments, the obstacles cannot be considered as slender
bodies, and the flow is not highly supersonic; hence, fully
nonlinear solutions of the GP equation, such as Eq. (11),
should be used for the quantitative description of spatial
dispersive shocks in a BEC. Here we shall use numerical
solutions of the GP equation to demonstrate that the struc-
tures generated by an obstacle inserted into the supersonic
BEC flow indeed contain the oblique dark solitons given by
Eq. (11).

To make this process clearer, numerical solutions of the
time-dependent GP equation (1), expressed in nondimen-
sional variables as

 i t � �
1
2� xx �  yy� � V�x; y� � j j

2; (19)

were studied, where ~ �  =
�����
n0
p

and ~t � �gn0=@�t, with
the other variables defined as in Eq. (2). From now on, the
tildes will be omitted. The potential V�x; y� corresponds to
the interaction of the condensate with the obstacle. Since
the detailed behavior of the potential should not be critical
for the formation of solitons far from the obstacle, it can be
safely modeled by an impenetrable disk. In our simula-
tions, its radius was set to r � 1 in our nondimensional
units. Initially, at t � 0 there is no disturbance in the
condensate, so that it is described by the plane wave
function  �x; y�jt�0 � exp�iMx� corresponding to a uni-
form condensate flow. To be specific, let us take M � 5.
Several stages of the numerically calculated BEC density
evolution are shown in Fig. 1.

It can be clearly seen how a pair of oblique solitons is
gradually formed behind the obstacle. Their length grows
with time, and, except in the vicinity of the end points, the
density distributions do not demonstrate any vorticity,
which agrees with our assumption of potential flow (4).
However, the flow cannot be considered as stationary and
potential near the end points. This is manifested by the
presence of vortices behind the end points of the spatial
solitons. One may interpret these vortices as a ‘‘vortex
street’’ [10] radiated by spatial dark solitons. However,
far enough away from these vortex end points, the flow
can be considered stationary. The establishment time of the
stationary profile can be estimated by the soliton width
divided by the sound velocity, which is t� 2 in our solu-
tions. This is much less than the value t � 20 for the last

plot in Fig. 1. The parameter p from Eq. (9) was calculated
using the value of the slope a inferred from the numerical
solution. A comparison of the theoretical profile of the
oblique dark soliton given by Eq. (11) with the correspond-
ing part of the density profile in the full numerical solution
is shown in Fig. 2. The excellent agreement between these
two profiles confirms that the line patterns in Fig. 1 are
indeed oblique dark solitons generated by the obstacle.
This agreement also justifies the assumptions made in the
derivation of the analytic solution (11). Note that, along
with the soliton, a small amplitude dispersive wave packet

FIG. 1. Emergence of a pair of oblique dark solitons after
‘‘switching on’’ supersonic flow (M � 5) past a disk-shaped
impenetrable obstacle of radius r � 1 located at �x � 0; y �
0�. The direction of the flow is from left to right. Density plots
are shown for 3 times: t � 5, t � 10, and t � 20. The dark
structures correspond to oblique dark solitons, which, in turn,
generate the vortex streets near the end points.
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FIG. 2. Cross sections of the density distributions for x � 20
(dashed line), x � 60 (solid line), and y > 0 obtained from
numerical solution of the GP equation (19). These are compared
with soliton profiles (11) with slope a � 10 shown as functions
of y at the same values of x (x � 20 corresponds to ‘‘crosses’’
and x � 60 to ‘‘circles’’).
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is generated, which corresponds to the ‘‘nonsolitonic’’ part
of the density perturbation induced by the obstacle. This
wave packet spreads out as distance from the obstacle
increases and eventually fades away.

In the above simulations, the parameters of the obstacle
have been chosen so that only a single soliton is generated
at each side of the obstacle. However, with the increase of
the size r of the obstacle, the number of solitons is also
expected to increase. This effect is demonstrated in Fig. 3,
in which two symmetric fans of solitons can be seen behind
the obstacle. As expected, the depth of the dark solitons
grows with the increase of the slope a with respect to the y
axis. Thus, the oblique dark solitons can be viewed as
‘‘building blocks’’ in more complicated patterns arising
in supersonic flows of a BEC. This figure also demon-
strates the robustness of the phenomenon for different
obstacle parameters. The whole structure in Fig. 3 repre-
sents a pair of dispersive shocks generated in the super-
sonic flow of a BEC past an obstacle. Such shocks were
considered in Ref. [7] in the limiting case of a highly
supersonic flow (M
 1) and slender obstacles (a
 1).
Our present numerical simulations show that spatial dis-
persive shocks represent a general phenomenon caused by
the interplay of dispersive and nonlinear effects described
by the full GP equation. We speculate that it can be also be
observed in flows of a BEC past 3D obstacles.

The above theory is based on the supposition that the
flow of a BEC is homogeneous and uniform enough for
periods of time sufficient for the generation of oblique dark
solitons. Let us indicate here the physical conditions which
should be satisfied for obtaining such a flow in experiment.
To be definite, we consider the example of 2D flow in
‘‘pancake’’ geometry; that is, the condensate is supposed to
be confined in the axial direction by a strong harmonic
potential. Let the transversal frequency!? of the potential
be small enough so that the (radial) Thomas-Fermi density
distribution is applicable. We consider expansion of the
BEC after switching off the potential (see, e.g., [11]). The

asymptotic as t
 1=!? solution of the cylindric GP
equation for r� l!?t, where l is the radius of the BEC
before its release from the trap, is given by n�r; t� 	
constant=�!?t�2, u�r; t� 	 r=t; that is, the density is practi-
cally uniform but varying with time. In the same approxi-
mation, the local healing length � and the local sound
velocity cs are given by � � @t=ml, cs � l=�

���
2
p
t�.

Hence, the local Mach number M 	
���
2
p
r=l. Thus, we get

a supersonic flow past an obstacle if we place it at the
distance d > l=

���
2
p

from the axis. Now the flow can be
considered as uniform if the size of the obstacle (scaled
as healing length � for a chosen moment of observation)
satisfies the condition �=d� 1. For d� l, this gives t�
ml2=@; i.e., the flow past an obstacle is asymptotically
uniform for !�1

? � t� ml2=@. At last, the characteristic
time of establishing the soliton distribution �=cs �m�2=@
obviously satisfies the above inequality since �� l, so
that the flow can be considered as quasistationary. At the
same time, our numerical simulations show that oblique
solitons are generated even in nonuniform and nonhomo-
geneous flows past obstacles; that is, the phenomenon is
very robust with respect to a change of parameters of the
flow.

To summarize, we have found an exact oblique dark
soliton solution of the GP equation and demonstrated
numerically that such solitons can be generated by ob-
stacles inserted into the supersonic flow of a BEC.
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FIG. 3. Density plot at the moment t � 30 for the supersonic
flow (M � 5) past a disk-shaped impenetrable obstacle with
radius r � 5 located at �x � 0; y � 0�.

PRL 97, 180405 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 NOVEMBER 2006

180405-4


