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Supersonic flow of a Bose-Einstein condensate past an oscillating attractive-repulsive obstacle
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We investigate by numerical simulations the pattern formation after an oscillating attractive-repulsive obstacle
inserted into the flow of a Bose-Einstein condensate. For slow oscillations we observe a complex emission of
vortex dipoles. For moderate oscillations organized lined up vortex dipoles are emitted. For high frequencies no
dipoles are observed but only lined up dark fragments. The results shows that the drag force turns negative for
sufficiently high frequency. We also successfully model the ship waves in front of the obstacle. In the limit of
very fast oscillations all the excitations of the system tend to vanish.
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Introduction. The realization of Bose-Einstein condensate
(BEC) in atomic gases has boosted intense theoretical and
experimental investigation about its exotic properties. BEC is
a paradigm of a quantum fluid and in a weak interacting case
can well be described by the Gross-Pitaevskii equation [1].
Eventually BEC spread to other systems such as exciton
polaritons [2], offering new possibilities for experimental tests.
An interesting feature of a quantum fluid is its contrasting
behavior as compared with a classical fluid. The flow of
a quantum fluid past an obstacle only generates drag force
above a certain subsonic critical velocity and the energy can
be dissipated into collective excitations of the fluid. This
dissipation can be inferred from numerical experiments by
the mean drag on the obstacle [3]. A superfluid behavior is
revealed below this velocity where nucleation of vortices never
occurs and no excitations are generated [4].

There is also a supersonic critical velocity where oblique
vortex streets are transformed into stable oblique dark solitons
[5]. For higher velocities, the general picture of the diffraction
pattern in the supersonic flow past a disk-shaped impenetrable
obstacle consists of two different parts separated by the Mach
(or Cherenkov) cone [6]. Outside the Mach cone there is a
region of linear waves that we will refer to simply as ship waves
[7,8]. Inside the Mach cone a pair of oblique dark solitons is
gradually formed behind the obstacle if the radius of the obsta-
cle is of healing length order. For greater radius more pairs of
oblique solitons are generated. Interaction of solitons was stud-
ied in [9,10] where it was found that the angle between dark
solitons decreases as the obstacle radius increases for a fixed
supersonic velocity of the flow. In previous experimental works
[7,11,12] the existence of such nonlinear structures were sug-
gested. However, only recently the generation of stable oblique
dark solitons was experimentally demonstrated in the flow of a
Bose-Einstein condensate of exciton polaritons past an obsta-
cle [13,14]. A numerical study to support these experimental
findings was done in [15], and the observation of vortex dipoles
in an oblate atomic Bose-Einstein condensate [16] suggests
that the supersonic studies can also be carried in this system.

*e.g.khamis@lboro.ac.uk
†gammal@if.usp.br

In atomic BEC, obstacles are typically represented by
detuned lasers that can effectively be attractive (red detuned)
or repulsive (blue detuned) obstacles, by the use of Feshbach
resonances. The first numerical study of attractive obstacles
was done in Ref. [17] where it was established the critical
velocity to the formation of vortices and corrects the velocity
found in [3] in the case of repulsive obstacles. Numerical
studies revealed that turbulence can also be achieved and
studied by spatial oscillation of a repulsive obstacle [18].
A clever way to control the formation of vortices moving
attractive and repulsive laser beams was proposed in [19].
The disappearance of gray soliton and phonon excitations was
demonstrated in [20] by oscillating a repulsive obstacle in a
quasi-one-dimensional trapped BEC at high obstacle veloci-
ties. It was found in [21] that vibration of an obstacle modulates
the vortex street.

In the present work, we study the flow of a BEC past an
oscillating attractive and repulsive obstacle. The motivation is
to answer the question: Can we get rid of drag for very fast
oscillations? We investigate different regimes from slow to
very fast oscillations. Since we are working in the supersonic
regime we can divide the study inside and outside the Mach
cone as follows.

Model equations. We consider the flow of an atomic BEC
past an obstacle in the framework of the Gross-Pitaevskii (GP)
mean-field approach. In the rest frame, the condensate is well
described by the macroscopic wave function � ≡ �(x,y,z,t)
obeying the time-dependent GP equation

ih̄
∂�

∂t
= − h̄2

2m
∇2� + Uext � + 4πah̄2

m
|�|2�, (1)

where ∇2 ≡ ∂2
x + ∂2

y + ∂2
z , the external potential Uext =

Utrap(x,y,z) + U (x + vt,y,z,�t) is represented by the sum of
a harmonic trap Utrap and a time-dependent obstacle potential
U that oscillates with frequency �, m is the atomic mass, and
a is the s-wave scattering length.

We will limit our study to the case of the quasi-two-
dimensional (2D) limit, i.e., we have a strong harmonic con-
finement in the z direction. In this regime we can approximate
�(x,y,z,t) = ψ(x,y,t)φ(z)e−iμz/h̄, where φ(z) and μz are the
ground state and energy, respectively, for the confinement in
the z direction [19,22]. Substituting in Eq. (1) and integrating
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in the z direction we obtain

ih̄
∂ψ

∂t
= − h̄2

2m

(
∂2
x + ∂2

y

)
ψ + U ψ + g|ψ |2ψ, (2)

where g = 4πah̄2m−1
∫

φ4(z)dz is the effective interaction in
two dimensions. We consider here that the obstacle runs close
to the center of the trap. In this region the condensate is almost
homogeneous and the potential in the x and y directions is
weak as compared to the obstacle potential. So the harmonic
potential is neglected for studying the excitation caused by the
obstacle.

We introduce dimensionless variables x̃ = x/ξ , ỹ = y/ξ ,
t̃ = gn0t/h̄, ψ̃ = ψ/

√
n0, Ũ = U/gn0, and �̃ = �h̄/gn0, the

Mach velocity M = v/cs , where n0 is a characteristic 2D
density of atoms at the center of the trap, ξ = h̄/

√
mn0g is

the characteristic length, and the sound velocity cs = h̄/mξ .
Typical experimental values are ξ ∼ 0.3 μm and h̄/gn0 ∼
0.18 ms [16]. Thus for �̃ ∼ 1 we have oscillations of the
order of kHz well within experimental reach. Substituting in
Eq. (2) and after dropping the tildes for convenience we get

i
∂ψ

∂t
= −1

2

(
∂2
x + ∂2

y

)
ψ + Uψ + |ψ |2ψ , (3)

where U = U (x + Mt,y,�t).

For computational purposes, in Eq. (3) we make a global
phase transformation ψ ′ = eitψ and later a Galilean transfor-
mation x ′ = x + Mt , t ′ = t leading to

i
∂ψ

∂t
= −1

2

(
∂2
x + ∂2

y

)
ψ − iM∂xψ − ψ + |ψ |2ψ + Uψ,

(4)

where U = U (x,y,�t), the primes were omitted for conve-
nience, and subscripts here mean derivatives. This equation
describes the system in the obstacle reference frame. The
obstacle is a laser beam that continuously oscillates from blue
detuned to red detuned and vice versa, which can be written as

U (x,y,�t) = U0 cos(�t) exp

[−2(x2 + y2)

w2
0

]
, (5)

where U0 and w0 are the amplitude and the beam waist of the
laser, respectively, and � = 2π/T is the oscillation frequency
of the detuning in a period T .

Inside the Mach cone. We have solved Eq. (3) numerically
in the supersonic regime using U0 = 25 and w0 = 1. In Fig. 1
we show the results for supersonic flow for different oscillation
frequencies.

FIG. 1. (Color online) Density diffraction pattern at fixed time t = 100 with the set of parameters: Mach number M = 3, potential intensity
U0 = 25 (the laser beam starts repulsive), and width w0 = 1 for frequencies � = 0, 0.5, 1.5, 10, and 20.

045601-2



BRIEF REPORTS PHYSICAL REVIEW A 87, 045601 (2013)

18

26

212 214 216 218

y

x

FIG. 2. (Color online) Left panel: Phase of the diffraction pattern that corresponds to Fig. 1 for frequency � = 1.5 which provides us
evidence of vortex dipole formation. Right panel: inset showing vector velocities of the vortex dipole in the selected region. Note that the
velocity in the x direction was not shifted by the constant flow velocity M for visualization purposes.

In the case of � = 0 we reproduce the formation of oblique
dark solitons [5,6,10]. Outside the Mach cone there is a
stationary wave pattern created by interference of linear waves.
Inside the Mach cone there are two oblique dark solitons that
decay at the end points into vortices, situated symmetrically
with respect to the direction of the flow. As we turn on
the oscillations observe the emission of dark fragments. For
� = 0.5 these fragments can be identified as vortex dipoles and
form a pattern of “5 in a dice.” As the frequency is increased to
� = 1.5 these fragments stand well aligned as vortex dipoles
as can be identified by the phase plot (see Fig. 2). These dipoles
are followed by a secondary radiation emission, identified as a
straight line almost parallel to the Mach cone. As the frequency
is further increased to � = 10 the fragments can no longer be
identified either as a single vortex or as vortex dipoles. By
looking at the phase the fragments are identified as short gray
solitons that propagate obliquely to the flow, analogous to the
ones observed in Ref. [23]. To check the (non)vorticity charac-
ter after some time of fragments formation we turned off the in-
tensity of the obstacle and no decay into vortices was observed.

One can explain the general behavior as follows. For � =
1.5 the oscillation acts as a “chopper” that turns on and off the

dipole emission. In this specific case the on time is more than
enough to generate vortex dipoles and thus we have excess
of energy that is ejected as secondary radiation. In the fast
oscillating regime (� = 10) the time the oscillation is on is
not enough to form dipoles and just small dark solitons can
be seen. As the frequency is around � = 20 practically no
more fragments can be seen. To check the consistency of our
analysis we studied the number of fragments as a function of
�. One can estimate that rate of fragments emission is close
to 1, meaning that at each period one fragment is emitted.
The linear behavior confirms the modeling of the oscillating
obstacle as a chopper.

Outside the Mach cone. Ship waves are formed in front
of the obstacle. The theory for a nonoscillating obstacle was
previously studied for a δ function in Ref. [24], where it was
found that the density changes are given by

δn = V0q cos (
 − π/4) (6)

with

q ≡
√

2k

πr

[(M2 − 2)k2 + 4(M2 − 1)]1/4

[(M2 − 2)k2 + 6(M2 − 1)]1/2
,

χ η

μ
k

y

x

r

FIG. 3. (Color online) Left panel: Coordinates that define the radius-vector r and the wave vector k. The latter one is normal to the wave
front which is shown schematically by a curved line. Right panel: Numerically calculated wave pattern for a fast oscillating obstacle at fixed
time t = 100 with the set of parameters M = 2, U0 = 25, w0 = 1, and � = 40. Solid line (red) corresponds to linear analytical theory [Eq. (7)]
for the line of constant phase.
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k ≡ 2
√

M2 cos2 η − 1, 
 ≡ kr cos μ, and the angles μ and η

are defined according to Fig. 3.
According to [24], one can find the shape of the lines of

constant phase (wave crests) 
 = kr cos μ in a parametric
form

x = r cos χ = 4


k3
cos η(1 − M2 cos 2η),

(7)

y = r sin χ = 4


k3
sin η(2M2 cos2 η − 1).

Predictions of the analytical theory are compared with the
numerically calculated wave pattern in Fig. 3 and excellent
agreement is found. So, the theory previously developed in [24]
remains valid even for a fast oscillating obstacle.

For a fast oscillating we assume that the resulting
ship waves can be computed by the Huygens principle,
i.e., by the superposition of stationary densities generated
by obstacles at different positions along the flow. Av-
eraging over a period this can be expressed as δnosc =
V0 q(1/T )

∫ T

0 cos(�t) cos (
 − π/4 + kMt) dt , where the
term kMt was added representing phase change due to the
obstacle movement along the time. After integration in time
one obtains

δnosc = V0q

2π

( −�kM

�2 − k2M2

)

× [sin(
 − π/4 + kMT ) − sin(
 − π/4)]. (8)

This formula shows that with increasing � the magnitude
of the δnosc decreases as 1/� and in the limit of � → ∞
the ship waves vanish. The plot illustrating this behavior is
shown in Fig. 4. As we see, Eq. (8) is accurate enough almost
everywhere, for � � 40, except in the small vicinity of the
obstacle.

Although the obstacle in the theory is represented by a delta
function, our numerical simulations using a narrow Gaussian
potential as the obstacle provide results in very good agreement
with our extended theory.

Drag force. We computed the drag force in the x direction as
Fx(t) =∫

Adx dy |ψ |2 ∂U
∂x

, where A defines an infinite region

FIG. 5. (Color online) Upper panel: Average drag force in the
x direction, 〈Fx〉, as a function of the frequency � for different
potential intensities. Middle panel: response function amplitude A1

as a function of �. Lower panel: relative phase δ1 as a function of �.
Here we can see that the sign of 〈Fx〉 depends on the relative phase
between the forcing potential and the response main mode.

of the fluid around the obstacle. For practical purposes we
took the integration along our whole grid. In Fig. 5 we show
the average drag taken at one period of oscillation. For slow
oscillation frequency � � 5 we observe that drag is decreasing
and positive as expected since both nonoscillating attractive
and repulsive potentials cause positive drag [17]. However,
for � � 5 the drag is always negative and vanishes in the
limit of � → ∞. So, the answer to the question can we get
rid of drag for very fast oscillations initially proposed is yes.
Surprisingly, the mean drag also vanishes at a small region
of low frequencies and this is a nonintuitive and remarkable
result.

The system can be seen as a forced oscillator. In our case the
oscillating potential forces the system and we obtain as output
an oscillating |ψ |2. Thus the drag force in the x direction can

40 80 120 160 200
0

0.005

0.01

0.015

nosc

analytical
numerical

FIG. 4. (Color online) Left panel: Profile of intensity in front of the obstacle for x < 0, y = 0 with the set of parameters M = 2, V0 = 2,
U0 = 25 (the laser beam starts repulsive), and w0 = 1. Solid lines (black) correspond to linear analytical theory, Eq. (8), and dashed lines (red)
to numerical solution of Eq. (3). Right panel: The solid line corresponds to the higher magnitude value of the δnosc close to x = −40 and the
red circles correspond to this magnitude calculated numerically at the same position.
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be explicitly written as Fx = U0 cos(�t)R(t), where R(t) is a
response function given by R(t) ≡ ∫

A(−4x/w2
0) exp[−2(x2 +

y2)/w2
0] |ψ(x,y,t)|2dx dy. We observed numerically that R(t)

is periodic with period T and thus can be written as a Fourier
series as R(t)=A0+A1 cos(�t+δ1)+A2 cos(2�t+δ2)+· · ·,
where A’s are amplitudes and δ’s are relative phases to the
forcing potential. Averaging the drag force in time we have
〈Fx〉 = (1/T )

∫ T

0 U0 cos(�t)R(t)dt , and only the second term
of the series survives giving 〈Fx〉 = (U0A1/�) cos(δ1), thus
the sign of 〈Fx〉 depends on the relative phase between the forc-
ing potential and the response main mode. We computed I ≡
(1/T )

∫ T

0 U0 sin(�t)R(t)dt = −(U0A1/�) sin(δ1), and from
〈Fx〉 and I we obtained A1 and δ1.

A negative drag can be interpreted as a force in the upwind
direction, meaning propels the laser. The question of the energy
balance can be explained from the oscillating laser. As it
attracts and repels the condensate it pumps energy to the system
that causes an upwind force to supersede the downwind force
due to the movement of the laser. This upwind force is only
generated in the moving and oscillating obstacle. For standing
(M = 0) oscillating obstacle the system is radially symmetric
and no drag is generated.

Conclusions. We have studied the wave pattern generated
by an oscillating obstacle in the supersonic flow of a quantum
fluid. Turning on oscillations causes disruption of the oblique

solitons into dipoles. For � = 1.5 the dipoles are emitted
organized as a vortex dipole street. For increasing frequencies
dipoles change gradually orientation in the clockwise direction
and their bunch resembles the oblique solitons. Finally for very
high frequencies the angle of emission increases and vortices
vanish. For the waves in front of the fast oscillating obstacle,
we could further extend the model previously developed for a
nonoscillating obstacle. These waves were shown to gradually
diminish according to the averaging of emission of linear
waves out of phase. Combined results, both ship waves and
solitons tend to vanish for high frequencies leading to a
vanishing drag. Remarkably, the mean drag also vanishes at a
small region of low frequencies during his change of sign from
positive to negative. So, even a powerful laser fast oscillating
from red to blue detuning could pass through an atomic BEC
without generating vortices or solitons. This result could be
experimentally checked with existing setups [16]. Analogous
experiments could also be performed with condensates of
exciton polaritons [13].
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