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The existence and dynamics of solitons in quasi-one-dimensional Bose-Einstein condensates with spin-orbit
coupling (SOC) and attractive two-body interactions are described for two coupled atomic pseudospin components
with slowly and rapidly varying time-dependent Raman frequency. By varying the Raman frequency linearly
in time, it was shown that ordinary nonlinear Schrödinger-type bright solitons can be converted to striped
bright solitons, and vice versa. The internal Josephson oscillations between atom number of the coupled soliton
components and the corresponding center-of-mass motion are studied for different parameter configurations.
In this case, a mechanism to control the soliton parameters is proposed by considering parametric resonances,
which can emerge when using time-varying Raman frequencies. Full-numerical simulations confirm variational
analysis predictions when applied to the region where regular solitons are expected. In the limit of high frequencies,
the system is described by a time-averaged Gross-Pitaevskii formalism with renormalized nonlinear and SOC
parameters and modified phase-dependent nonlinearities. By comparing full-numerical simulations with averaged
results, we have also studied the lower limits for the frequency of Raman oscillations in order to obtain stable
soliton solutions.
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I. INTRODUCTION

A progressively growing interest in the physics of Bose-
Einstein condensates (BECs) with spin-orbit coupling (SOC)
has been observed in recent years [1–5]. For the coupling,
different forms of Rashba [6] and Dresselhaus [7], as well as
a mixture of them, have been realized [8]. Important forms for
the nonlinear excitations have been verified with the structure
of stable solitons for condensed systems having attractive
and repulsive interactions. In this regard, we note that the
existence of solitons in BECs with SOC was investigated in
Ref. [9], for the case in which there are repulsive interactions
between atoms, and, in Refs. [10–13], when the interactions
are attractive. Gap solitons are predicted in Ref. [14] for a BEC
with SOC in a spatially periodic Zeeman field, corresponding
to a linear optical lattice. Experimentally, it is not an easy
task to control the SOC parameter, with recent suggestions
to tune it by applying rapid time variations of the Raman
frequency [15,16]. The experimental observations reported in
Ref. [17] show that the spin-orbit coupling can be tuned in
this way. In principle, the periodic variation in time of the
condensate parameters can lead to new phenomena such as the
generation of new quantum phases [18], artificial gauge fields
[19], compacton matter waves [20], etc. Therefore, it is actually
quite relevant and of interest to investigate how the periodic
time variations of the Raman frequency can affect the nonlinear
modes of the condensate, such as solitons and vortices. In the
limit of high frequencies, as shown in Ref. [15], the averaged
Hamiltonian contains the nontrivial renormalization of the
spin-orbit coupling, as well as the new effective nonlinear
phase, which is sensitive to the interaction strengths [21].

Our main task in the present work is to investigate the
dynamics of solitons and Josephson-type oscillations between
solitonic components, considering BECs with tunable spin-
orbit coupling, with attractive interactions between the atoms,
under slow and rapid time modulations of the Raman fre-
quency. In this regard, related to Josephson oscillations in
BECs, we note some previous studies in Refs. [22–25]. In
particular, when considering the Raman frequency modulated
in time together with changes in other parameters of the system,
one should expect to observe parametric resonance phenomena
occur in the internal Josephson oscillations, which have been
introduced between the atom-number fraction existent in each
of the components of the condensate with SOC. The parametric
resonances in this case are introduced by the time dependence
of the Raman frequency and its corresponding relation with
spin-orbit coupling of the two components of the condensate.
Such study can be useful for possible experimental investiga-
tions, which can help the control of BEC parameters through
resonance phenomena observations. We should point out that
previous studies of parametric resonances in BEC have been
mainly concerned with time variations in trap configurations,
optical lattices, as well as nonlinear parameters, looking
for direct interference effects manifested in the densities
[26–31]. In our present study, by introducing a time modulation
in the Raman frequency, the main focus is the oscillatory
behavior between the internal atom-number population of the
two components during the time evolution of the condensate.

We start our study by first considering the case in which
we have defined the spin-orbit parameter and constant Raman
frequency in order to verify the characteristics of the existent
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soliton solutions, which can be regular or striped solitons.
Next, we introduce an adiabatic time modulation in the Raman
frequency (growing and decreasing linearly), such that we can
study how to switch between different kind of solitons. We
follow our study by considering the Josephson oscillations
between the components for both the cases in which we have
regular and striped soliton solutions. Parametric resonance ef-
fects in the oscillations are verified by periodically considering
time variation of the Raman frequency at some given SOC
parameters. The case of rapid time modulations of the Raman
frequency can be treated by using a time-averaging approach,
which is implemented over the time-dependent coupled sys-
tem, implying a renormalization of the SOC and nonlinear
parameters. In this way, the interactions are effectively time
independent. This case is discussed in Sec. IV.

We consider exact numerical simulations in all the cases,
complemented by theoretical analysis, using variational ap-
proaches, whenever simplified solutions can be performed.
As shown, the predictions derived by using the variational
approach (VA) are verified to be fully consistent with the
given numerical results in the region where regular bright
solitons are obtained. In other cases, where the solutions are
striped ones, demanding more parameters in the Ansatz, the
VA is quite helpful to indicate regions of stability as well as
the initial starting profiles for the full numerical computation.
By using the multiscale expansion method for the averaged
system, solitonic solutions are also found and confirmed by
our numerical simulations of the full coupled system with
time-dependent Raman frequency.

Next, the basic formalism of the model is presented in
Sec. II. For reference to other sections, we add Sec. II A, where
we provide some details of the linear energy dispersion, which
defines two regions for the kind of soliton solutions that we can
obtain (regular or striped). And in Sec. II B, we already include
some results to exemplify the two possible solutions and how
to transform solitons between the two regions by considering
the adiabatic linear time variation of the Raman frequency. In
Sec. III, by considering the Raman frequency modulated in
time and Josephson oscillations, we analyze the possibility to
obtain resonant responses. The case with the Raman having
high-frequency modulations is presented in Sec. IV. Finally,
in Sec. V, we present our main conclusion.

II. MODEL FORMALISM

In our approach, we consider a spin-orbit-coupled BEC with
equal Rashba and Dresselhaus contributions for the spin-orbit-
coupling terms, as in Ref. [11], which can be described by a
one-dimensional (1D) coupled equation for the two pseudospin
components. For that, let us consider a harmonic trap where
the frequency along one direction, ωx , is much smaller than
the frequency in the perpendicular direction, ω⊥. In this case,
given the units of energy, length, and time, respectively, by

h̄ω⊥, a⊥ =
√

h̄
mω⊥

, and 1/ω⊥ (where m is the mass of both

atomic components), we can write in dimensionless units the
corresponding SOC formalism for the two pseudospin compo-
nents, u ≡ u(x,t) and v ≡ v(x,t), of the total wave function,

ψ ≡ ψ(x,t) ≡
(

u

v

)
. (1)

The corresponding matrix-formatted nonlinear Schrödinger-
type coupled equation can be written as

i
∂

∂t

(
u

v

)
=

[
−1

2

∂2

∂x2
− ikLσz

∂

∂x
+ Vtr + �(t)σx

](
u

v

)

−
(|u|2 + β|v|2 0

0 β|u|2 + γ |v|2
)(

u

v

)
, (2)

where Vtr ≡ Vtr(x) ≡ (ωx/ω⊥)2x2/2 is the trap potential,
assumed to be zero (Vtr = 0) in the present study. σx,z are
the usual Pauli matrices, with kL being the strength of the
spin-orbit coupling and �(t) the time-dependent Raman
frequency (also given in units of the trap frequency ω⊥). In the
nonlinear terms we have the dimensionless parameters β and
γ , which are given by the ratio between the two-body scattering
lengths, aij (i,j = 1,2), of the two atomic components, such
that β = |a12/a11|,γ = |a22/a11|. In the present work, we are
going to consider attractive two-body interactions, such that
we have an overall minus signal for the nonlinear interaction.
From the symmetry of the coupled equations (2) for γ = 1,
we can extract a simple relation between the two components
u and v: Let us consider that for a given parameter kL, we are
identifying the solution for u by u(x,t) ≡ u(kL)(x,t). In this
case, a particular solution decoupling the equations can be
verified with v(x,t) = ±u(−kL)(x,t).

A. Linear energy spectrum

For a constant Raman frequency �(t) = �0, the linear
energy spectrum can be derived by considering a plane-
wave function with momentum k, (u,v) = (u0,v0) exp{i[kx −
w(k)t]}, which will give us the following dispersion relation:

w±(k) = 1
2k2 ±

√
k2
Lk2 + �2

0. (3)

This relation, also shown in Ref. [11], is plotted as a function
of k in Fig. 1, where two different regions (I and II) can be
distinguished according to the choice of parameters we have
for the spin-orbit coupling kL and Raman frequency �0.

In region I, which happens when k2
L < �0, we can only

obtain two single minima in the dispersion relation: when
w±(k) = w±(0) = ±�0. For k2

L > �0, in region II, w+(k)
has just one minimum (at k = 0, as in the case of region I).
However, in this case, the dispersion relation forw−(k) presents
a local maximum at k = 0 with two minima at k = ±k0,
where k0 ≡ kL

√
1 − �2

0/k4
L; both with wmin = k2

0/2 − k2
L =

−(k2
L + �2

0/k2
L)/2.

As already verified in Ref. [11], bright-soliton solutions
of the nonlinear Schrödinger equation (NLSE) are obtained
in region I. However, for k2

L > �0 (region II), the solutions
are striped-type bright solitons. In Fig. 1, the two regions
are represented and exemplified for particular values of �0,
= 2k2

L (region I) and = 0.3k2
L (region II). The bright-solitonic

solutions can be found by the multiple-scale analysis, which
is used in Sec. IV to investigate the soliton dynamics under
rapid modulations of parameters. Here, we should remark that
the observation of striped phases has been recently reported
in Ref. [5] for a BEC with SOC. In the following section,
we exemplify the kind of soliton solutions we obtain in
both regions, using constant and linearly time-varying Raman
frequencies.
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FIG. 1. Energy dispersions w+(k) (dashed curves) and w−(k)
(solid curves), given by (3), are shown for two regions of parameters:
region I, when k2

L < �0 (upper panel, exemplified with �0 = 2k2
L),

and region II, when k2
L > �0 (lower panel, exemplified with �0 =

0.3k2
L). In both panels, the dot-dashed and dotted lines indicate the

extremes, with the minima of w+ at (k,w+) = (0,�0). The minima of
w− are at (k,w−) = (0, − �0) in region I and at (±k0,wmin) in region
II, where k2

0 = k2
L − �2

0/k2
L and wmin = −k2

L + k2
0/2.

B. Regular and striped soliton interchanged by adiabatic
time variation of �(t)

With adiabatic time variation of the Raman frequency, �(t),
we can transform solitons from one region to another region
for a given fixed kL. By considering a regular soliton obtained
in region I for �(t) = �0, it can be transformed to a striped
soliton by decreasing �(t), or, the other way, if started in region
II. For that, let us consider a variation of the form

�(t) = �0(1 ± 	t). (4)

Recently, such variation has been used in numerical simula-
tions for dark-soliton generations in a BEC with SOC [32].
The transition of a soliton solution obtained in region II
(striped soliton) to region I (regular soliton), and back from
region I to region II, is illustrated in Fig. 2, obtained for
different values of the time-dependent Raman frequency such
that we have an adiabatic transition. In terms of the step
function 
(x) (=0 or 1, respectively, for x < 0 or x � 0),
we can write the time-varying Raman frequency as �(τ ) =
(45 + τ )
(20 − τ ) + (85 − τ )
(τ − 20). In these cases, the
results are obtained with the same values of the nonlinear
parameters, which are related to the scattering length ratios,
β = γ = 1, implying that the inter- and intraspecies scattering
lengths remain the same.

In all the cases considered in the present work, we are using
exact full-numerical solutions of the coupled Gross-Pitaevskii
(GP) formalism (2) by applying an imaginary-time propagation
method [33] using the Crank-Nicolson algorithm, followed by
real-time evolution of the soliton profiles. The time steps, as
well as the total x-space interval and corresponding discretiza-
tion, have been adapted to obtain convergent and accurate
results. In most of the cases, considering our dimensionless
units, we found the time step δt = 10−3 to be sufficient in the
imaginary-time relaxation procedure and 10−4 in the real-time

0
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2

|ψ
|2

Ω=50, τ=5

0

1

2 Ω=60, τ=15

−2 −1 0 1 2
x

Ω=45, τ=40

Ω=50, τ=35

Ω=65, τ=20

−2 −1 0 1 2
x

0

1

2 Ω=45, τ=0

FIG. 2. A soliton profile is shown for �(t) varying in time as
�(τ ) = (45 + τ )
(20 − τ ) + (85 − τ )
(τ − 20) [where 
(x) = 0
for x < 0, and 1 for x > 0]. The parameters are kL = 8, β = 1, and
γ = 1. The soliton is generated as a striped one (region II, lower-left
panel with � = 45) being converted to a regular soliton (region I, in
the upper-right panel with � = 65), returning to region II by inverting
the time variation. All quantities are dimensionless.

evolution. In this regard, we can mention that particular care
has to be taken in the time evolution of striped solitons, where
stable solutions demand a large enough number of grid points
δx within a large x interval (to avoid border effects). In view of
that, for some results we decrease the time step to δt = 10−5.
Throughout the text, we provide some theoretical analysis
by using variational Ansätze, which are verified to be more
efficient in region I where the solutions are regular solitons. For
the case in which rapid modulations are used for the Raman fre-
quency, in region II, it was also shown to be quite useful to em-
ploy a multiscale expansion for the averaged coupled system.

III. TIME-MODULATED RAMAN FREQUENCY
AND INTERNAL JOSEPHSON OSCILLATIONS

An interesting case that can be explored is the influence of
time-varying Raman frequency on the oscillations in atomic
populations, which can occur between the components of the
soliton solutions (the internal Josephson effect) in regions I
and II. The time-periodic modulation of the Raman frequency
may lead to resonant responses of solitons in BECs with SOC.
This phenomenon is possible to occur for the imbalanced
populations between soliton components, which are produced
initially with different phases. To study the dynamics of this
kind of process, in both the cases of region I (�0 > k2

L)
and region II (�0 < k2

L), we first implement the Josephson
oscillations for constant Raman frequencies �0 by introducing
a phase between the two soliton components before starting the
time evolution of the coupled system.
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For the time-modulated Raman frequency, we consider the
following expression:

�(t) = �0 + �1 cos(ωt), (5)

where �1 is the amplitude, with ω the frequency of the
oscillations. Different regimes are possible in the dependence
of the values of the modulating frequency ω, such that we can
have slow (ω � �0), resonant (ω ∼ �0), or rapid (ω � �0)
modulations. In this section, we are mainly concerned with the
intermediate regime, where we can have resonant responses
such that we assume small amplitude for the oscillations,
�1 � �0. The case of very slow frequency was reported in
the previous study presented in Sec. II B. The other regime for
the time-perturbed Raman, with high frequencies ω and large
amplitudes �1, is considered in Sec. IV.

The studies in this section are done using a full-numerical
simulation, as well as by some analytical considerations
through a variational procedure. In order to study the inter-
ference effect on the Josephson oscillation due to a time-
modulated Raman frequency, we employ a variational ap-
proach in region I (where k2

L < �0 and regular soliton solutions
are obtained), considering the Ansatz

(
u

v

)
=

(
A1e

−[(x−x0)2/(2a2)−ik1x−iφ1]

A2e
−[(x−x0)2/(2a2)−ik2x−iφ2]

)
, (6)

where Ai , a, x0, ki , and φi (i = 1,2) are time-dependent
parameters where we have the assumption that the solitons have
the same width a and center of mass x0 (i.e., both components
overlap), which are confirmed by numerical simulations. By
considering the Lagrangian density for Eq. (2) and the above
variational Ansatz, we have

L(x,t) =
[

i

2

(
u∗ du

dt
+ v∗ dv

dt

)

+ ikL

2

(
u∗ du

dx
− v∗ dv

dx

)
+ c.c.

]

− 1

2

∣∣∣∣du

dx

∣∣∣∣
2

− 1

2

∣∣∣∣dv

dx

∣∣∣∣
2

− �u∗v − �v∗u

+ 1

2
|u|4 + γ

2
|v|4 + β|u|2|v|2, (7)

with the Lagrangian given by L = ∫ ∞
−∞ dxL(x,t):

L = −
2∑

i=1

Ni

[
dφi

dt
+ dki

dt
x0 + 1

4a2
+ k2

i

2
+ (−)ikikL

]

− 2�(t)
√

N1N2e
−a2k2

− cos(2k−x0 + φ)

+ 1

2
√

2π a

(
N2

1 + γN2
2 + 2βN1N2

)
. (8)

Here, and in the following, we use the definitions k± ≡
(k1 ± k2)/2 and φ ≡ φ1 − φ2. The number of atoms for each
component i = 1,2 is given by Ni ≡ √

πA2
i a, with the to-

tal number N = N1 + N2 being conserved. By assuming a
weak SOC parameter, k− ≈ kL, following arguments given in
Ref. [34], the corresponding Euler-Lagrange equations for the
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N
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1.0 φ=π/2, π/4, π/8   Ω0=80, kL=4

FIG. 3. The atom-number oscillations, with the corresponding
dependence on the phase φ introduced between components for
solitons in region I, are shown for�0 = 80 (upper panel) and 20 (lower
panel). The given results are for φ = π/8 (green, smaller amplitudes),
π/4 (blue, intermediate amplitudes), and π/2 (red, larger amplitudes),
with the spin-orbit coupling and nonlinear parameters, respectively,
given by kL = 4 and γ = β = 1. All quantities are in dimensionless
units.

parameters are given by

dx0

dt
= k+,

dk+
dt

= 2e−k2
La2

�(t)kL

√
1 − Z2 sin(ϕ),

dZ

dt
= −2e−k2

La2
�(t)

√
1 − Z2 sin(ϕ),

dϕ

dt
= 2kLk+ + �Z + 2e−k2

La2
�(t)Z√

1 − Z2
cos(ϕ), (9)

where Z ≡ (N1−N2)/N , ϕ ≡ 2k−x0 + φ, � ≡ N (1−β)/
(
√

2πa), and, for simplicity, we fix γ = 1. In the case of a
hyperbolic-type Ansatz, the exponential factor in the above
equations, derived from a Gaussian Ansatz, is changed as
e−k2

La2 → (πkL/η)/ sinh(πkL/η) (where η is the soliton am-
plitude). In the weak SOC limit, when kL � η/π or kL � 1/a,
this factor reduces to one.

This system is analogous to the one considered in [34]
for a constant � = �0, where it was shown that in the
Euler-Lagrange system for the parameters, the equation for
the center of mass, x0 = (x1 + x2)/2, can be approximately
solved as x0 ≈ (kL/2�0) cos(2�0t). Thus, the center-of-mass
oscillations are small, with its amplitude of the order of
≈ kL/2�0. By considering our numerical simulations, as
discussed in more detail in the next section and with results
given in Figs. 3 and 4, for the case that kL = 4 and �0 = 20,
we have confirmed that the center-of-mass oscillations agree
with the estimated value of ∼0.1, as shown in Fig. 4.

Then, for small values of kL (as compared with �0), we can
consider the following coupled system:

dφ

dt
= �Z + 2e−k2

La2
�(t)Z√

1 − Z2
cos(φ), (10)

dZ

dt
= −2e−k2

La2
�(t)

√
1 − Z2 sin(φ), (11)
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FIG. 4. Density plots for soliton profiles corresponding to the
lower panel of Fig. 3 (�0 = 20) for |u(x,t)|2 (upper panel), |v(x,t)|2
(middle panel), and |u(x,t)|2 + |v(x,t)|2 (lower panel), obtained at
the positions x in the time interval 0 � t � 1. The density levels are
indicated in the right-hand side (all quantities are dimensionless).

which describes the internal Josephson oscillations of atomic
populations between two pseudospin components. For a con-
stant Raman frequency, these oscillations have been studied
in Ref. [35]. It appeared when investigating the macroscopic
quantum tunneling obtained in a double-well potential having
a barrier between the wells with constant height [36]. This was
also studied in Refs. [37–39] for the case in which the barriers
between wells have their heights oscillating in time.

At some frequencies of the modulations, it is possible
to verify parametric resonance in the Josephson oscillations.
In the following, we will discuss the full-numerical results
by considering the two possible regions defined in Fig. 1
by the relations between the Raman and SOC parameters.
The results obtained in region I, where we have bright-type
solitons, are shown to be fully compatible with a variational
approach. However, for region II, where we have striped
soliton solutions, the coupled system is not so amenable to
simplified variational analysis such that we can provide only
rough estimates for some limiting situations. Therefore, in the
case of time evolution for the striped solitons with constant and
time-dependent Raman frequencies, our study relies mostly
on full-numerical simulations, which are shown to provide
convergent results with high numerical precision.

A. Results for Josephson oscillations in region I

The results in this case are for �0 > k2
L, considering the

Raman frequency constant as well as time modulated. In
the case of time-modulated Raman frequency, we also have
introduced a variational analysis to provide an estimate for
the localization of the modulation frequency leading to the
resonant behavior.

1. Constant Raman frequency: �(t) = �0

When �0 is constant, the frequency of the free oscillations
is given by

ωJ =
√

2�0(2�0 + �) (=2�0 for β = 1). (12)

From numerical simulations for free Josephson oscillations
of the full system of the GP equation, the results obtained
in region I (k2

L > �0) are represented in Figs. 3 and 4 by
considering the spin-orbit-coupling parameter kL = 4, with
two constant Raman frequencies given by �0 = 80 (upper
panel) and �0 = 20 (lower panel). In Fig. 4, we show the
density plots for |u|2, |v|2 and |u|2 + |v|2, corresponding to
the case in which �0 = 20 for the time interval 0 < t < 1.

The purpose, in this case, is to verify the dependence
of the oscillating behavior on different values of the initial
phase φ introduced between components when starting the
evolution. By considering three values for the initial phase φ,
it is shown that the maximum of the periodic atom transfer
occurs at φ = π/2, reaching almost 100% of atoms in the case
in which �0 = 80. It is also shown that the phase φ affects
only the amplitude of the oscillations, but not the frequency.
The constant Raman parameter will determine the frequency
of the oscillations, which is given by ≈ 2�0, confirming the
theoretical prediction (12).

2. Time-modulated Raman frequency: �(t) = �0 + �1 cos(ωt)

Now, let us analyze the case when �(t) is modulated in
time such that �(t) = �0 + �1 cos(ωt), in order to verify the
localization of possible resonant behaviors. For that, we can
consider two limiting conditions for Eq. (10): one applied
for Z � 1, when φ(0) ≈ 0, and the other for the regime of
macroscopic quantum localization, as follows.

Let us consider the linear regime case, when φ(0) ≈ 0 and
Z � 1. Within these conditions in Eq. (10), using the second
derivative for Z, we obtain a modified Mathieu differential
equation with the main term in Z oscillating with a frequency
ω0, where ω2

0 ≡ 2�0(2�0 + �) + (2�1)2. For that, when
considering small values of � and �1, the standard analysis as
given in Ref. [40] can be applied, which leads to a resonance
at ω = 2�0 (in case β = 1, so � = 0). In this case, parametric
resonances are also expected to occur for ω = 2ωJ , where ωJ is
the frequency of free Josephson oscillations given in Eq. (12).

The results of our investigations on resonant interferences
which can occur in region I are presented in Figs. 5–8. They
are obtained from numerical simulations of the full coupled
system (2), with the Raman and SOC parameters �0 = 320
and kL = 8, respectively. For the time modulation of the Raman
parameter, given by Eq. (5), we assume the amplitude given
by �1 = 0.1�0. The choice of these parameters in region I
is to more clearly distinguish the manifestation of resonant
interferences in the Josephson oscillations between the atom
numbers of the two components, Z = N1 − N2 (N = 1).
We also found it illustrative to provide some density plots
for the components and total profiles corresponding to the
results presented in Fig. 5. Therefore, in Fig. 6, we show
the case where we have β = 0 in Fig. 5. Here, we should
remark that the perturbed results obtained when we are not
close to the resonant interference regions are shown to be
almost identical to the unperturbed results (as observed by
comparing the first column of panels in Fig. 6 with the third
column). Indeed, quite small center-of-mass oscillations are
verified near the initial localization. Another point that can
be observed from these results is that the center of mass
of the soliton is strongly affected by the resonant behavior,
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FIG. 5. Resonant interference patterns verified for ω = 2�0 are
shown in the atom-number oscillations for the case in which �0 =
320, �1 = 0.1�0, kL = 8, and γ = 1, considering different values
of parameter β (as indicated by the corresponding arrows). We have
β = 0 and 0.5 in the upper panel, and β = 1 and 2 in the lower panel.
The shaded areas, in each case, represent the range of the oscillations
in the real-time propagation of the two components. In all these cases,
the time evolution was performed with δt = 10−4, with a starting
phase π/4 introduced between the two components. All quantities
are in dimensionless units.

such that it can be verified in the central panels of Fig. 6
that the central position is moving from x = 0 at t = 0 to
x ≈ 2 at t = 16. There is no change observed in the center
of mass for the other cases, outside the resonant region. The

0 10 20 30 40 50
t

ω=3.998Ω0, Ω1=32
ω=4Ω0
Ω1=0

0 10 20 30 40 50
t

−1.0

−0.5

0.0

0.5

1.0

N
1−

N
2

ω=2Ω0, Ω1=32
Ω1=0

Ω0=320

FIG. 7. Parametric resonant behaviors verified in the atom-
number oscillations N1 − N2 during the time propagation of a two-
component soliton, with �0 = 320, kL = 8, �1 = 0.1�0, β = 0, and
γ = 1. In both panels, we also indicate with dash-dotted lines the
extremes of the oscillations for the case �1 = 0, for comparison.
In the left panel, the oscillations at resonant position, ω = 2�0, are
within the shaded region. In the right panel, we show the results for two
frequencies (ω = 4�0 and ω = 3.998�0) close to the region where
parametric resonance is expected. The shaded region with oscillations
close to the nonperturbed case is for ω = 4�0. In all these cases, for
the time interval shown, the time step was δt = 10−5, with a starting
phase π/4 introduced between the two components. All quantities are
in dimensionless units.

numerical simulations of the variational system (8) confirm this
behavior of the motion of the center of mass for the solitonic

FIG. 6. Density plots for soliton profiles corresponding to the case with β = 0 shown in Fig. 5 (�0 = 320) for |u(x,t)|2 (upper panels),
|v(x,t)|2 (middle panels), and |u(x,t)|2 + |v(x,t)|2 (lower panels), obtained at the positions x in the time interval 0 � t � 16. In the left frames,
we have the nonperturbed oscillations (�1 = 0); in the middle frames, the oscillations at resonant position (�1 = 0.1�0 = 32, with ω = 2�0);
and, in the right frames, the nonresonant perturbed case, with ω = 2.5�0. All quantities are in dimensionless units.
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FIG. 8. Density profiles |ψ |2 (solid blue), |u|2 (red circles), and
|v|2 (green triangles) for different time positions in the evolution of
the coupled soliton, considering the case shown in the right panel
of Fig. 7, where ω = 3.998�0. The parameters are kL = 8, �0 =
320, �1 = 0.1�0, β = 0, and γ = 1, with a starting phase π/4. All
quantities are in dimensionless units.

components and the oscillations of the atomic imbalance at
the resonance.

We should comment that for the values of the frequency ω,
the resonant position (“window”) is quite sharp, as verified in
our numerical simulation, such that the resonant perturbations
are confirmed only for ω very close to 2 and 4 �0, which
makes the simulations quite time demanding. As shown in
Fig. 5 and in the left panel of Fig. 7, for a large time
interval going up to t = 50, one of the resonant positions is
detected for ω = (2 ± 0.001)�0. By a slightly larger deviation
of this frequency, the results for the oscillations are about the
same as given for the nonperturbed case (�1 = 0), shown
in the left panel of Fig. 7. The other resonant position, as
shown in the right panel of Fig. 7, for β = 0, is found in
an even smaller range of ω, given by ω = 3.998�0, with
the fluctuation starting to appear when we have ω exactly
4�0. In Fig. 5, we also show how the resonant behaviors
are affected by changes in the nonlinear parameter β. As
shown, it is enhanced in the case that β = 0, with the variation
N1 − N2 having peaks with maxima close to 0.9. The case
of β = 0, for ω = 2�0, is also presented in the left frame
of Fig. 7 for comparison with the unperturbed results of the
Josephson oscillations.

With Fig. 8, we conclude the analysis of the results shown
in Figs. 5–7 by presenting the behaviors of density profiles
(total and for each component) in two-dimensional plots for
different time positions of the evolution.

B. Results for Josephson oscillations in region II

Now, let us consider the Josephson oscillations between
components of the striped soliton solutions, corresponding
to region II in the dispersion relation, which are given by
�0 < k2

L. We perform this study by considering full-numerical

simulations of the corresponding GP coupled equations. First,
we provide some results obtained for Josephson oscillations
in the case in which we have constant Raman frequency.
Next, we consider the more general case, where the Ra-
man frequency is modulated in time, and we can have res-
onant results at some particular values of the modulating
frequency ω.

We start the study of this section by considering a variational
analysis, where we need to introduce the momentum k0 =
±kL

√
1 − �2

0/k4
L, which provides the momentum position of

the minima shown in the lower panel of Fig. 1. By observing
that the coupled equations for the imbalanced populations
and relative phase are not easy to derive in explicit form,
in a more general case, let us assume that the tunneling
between components occurs for the same sign of k0. The time
modulations for �(t) are not inducing transitions between
oppositely propagating modes with ±k0. To have such transi-
tions, the so-called momentum Josephson oscillations, we need
parameters with periodic modulation in space [41]. Therefore,
by assuming for the components the same Ansatz as given in
Eq. (6) but with ki=1,2 = k0 and considering the center fixed
at x = 0, we arrive at the same coupled expressions (10) and
(11), except that the equation for dφ/dt contains an additional
term 2kLk0. By linearizing the system relative to Z, we obtain

dφ

dt
= 2kLk0 + [� + 2�(t)]Z cos(φ), (13)

dZ

dt
= −2�(t) sin(φ). (14)

For a constant � and with 2kLk0 � � + 2�0, we have

φ ≈ φ0 + (2kLk0)t, (15)

implying that the population imbalance Z is oscillating with
the frequency ωstr ≈ 2kLk0. Therefore, we should expect a
different behavior of the results, in comparison with the region
I, in the initial stage (defined by kLk0). For larger time of the
propagation, the frequency for the oscillations should approach
the same ones as verified for region I.

1. Constant Raman frequency: �(t) = �0

For the numerical simulation of the Josephson oscillations
obtained in region II, we first select some results obtained for
constant values of �0, which are given in Figs. 9 and 10, by
considering an initial phase difference between components
given by π/2. In these cases, by considering kL = 4 (Fig. 9)
and kL = 8 (Fig. 10), with several values of �0 < k2

L, we can
clearly verify that we have an initial stage of the oscillations
where the frequencies are not depending on �0, but only on
the values of kL, being ω ∼ 10π for kL = 4 and ω ∼ 40π

for kL = 8. The values of �0 affect only the amplitude of the
initial oscillations. However, for larger times, the behavior of
the frequencies is similar to region I. Another observation from
these results is that for a long-time interval, the Josephson
oscillations are being damped as we increase the difference
k2
L − �0. In Fig. 10, we present two inset panels from which
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FIG. 9. Atom-number oscillations between components are
shown as functions of time, for kL = 4 in region II, where larger
initial amplitudes correspond to larger values of �0 (indicated inside
the panel). As verified, the amplitude of the oscillations decays faster
for smaller values of �0. The initial phase is φ = π/2 (to enhance
the amplitude of the oscillations), with β = γ = 1. All quantities are
dimensionless.

we can verify the initial and intermediate oscillation patterns.
In the inset with t � 0.2, just after starting the evolution, the
frequency is about the same for all three cases, ω ∼ 40π , not
depending on �0. In the other inset, for 0.2 � t � 0.4, after a
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FIG. 10. Atom-number oscillations between components are
shown as functions of time, for kL = 8 in region II, for few values of
�0 (indicated inside the panels). As in Fig. 9, larger initial amplitudes
correspond to larger values of �0. The two inset panels are given in
appropriate scales to clarify the change in the oscillating behavior in
two time intervals. As in Fig. 9, here the initial phase was fixed at
φ = π/2, with β = γ = 1. All quantities are dimensionless.
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FIG. 11. Resonant interferences in the atom-number oscillations
are shown for striped solitons for kL = 8, β = γ = 1 and initial phase
π/4. In the upper panel, we have �0 = 40, with �1 = 2 (red circles
line) and 4 (blue solid line) compared with the unperturbed case
�1 = 0 (black dotted line). In the lower panel, for �0 = 60 closer
to k2

L, we have �1 = 3 (red circles line) and 6 (blue solid line)
compared with the case �1 = 0 (black dotted line). In both cases,
the resonant interferences are verified for ω ∼ 40π . All quantities are
in dimensionless units.

transient time interval, the frequency changes to 2�0 (as in the
case of region I).

2. Time-modulated Raman frequency: �(t) = �0 + �1 cos(ωt)

When studying the phase dependence of the atom-number
oscillations for striped soliton solutions, we first observe
that the amplitude of the oscillations depends on the initial
phase difference, as already verified in the case in which
we have a constant Raman frequency parameter, given by
�0. Therefore, before considering the case where we have
the Raman frequency perturbed in time, we have studied the
phase dependence of the atom-number oscillations for striped
soliton solutions during time evolution. In this numerical
study, we have verified that for arbitrary initial fixed phase
φ (from 0.01 to π/2) introduced between components, only
the amplitude of the oscillations is being affected, which is
verified by the transient time just after starting the evolution
of the solutions. The frequency of the oscillations does not
depend on the strength of the Raman frequency �0, at least
during the transient time until the oscillations become stable. In
a longer-time interval, after the transient time, the frequency of
the oscillations will correspond to the Raman frequency, given
by 2�0, as discussed for the case of regular soliton solutions.
As the initial phase between the components can be arbitrary
and will not affect the natural frequency of the oscillations
between N1 and N2, when studying time-perturbed Raman
frequency, in general, we choose this phase to be π/4 such
that the amplitude of the natural oscillations is not too large
and not too small.

In the case of periodic modulations of �(t) in region II
(�0 < k2

L), the results of our numerical simulations to identify
parametric resonances is first exemplified by Figs. 11 and 12.
In Fig. 11, for kL = 8, we present two panels considering
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FIG. 12. Dynamics of the density oscillations between compo-
nents for striped solitons are represented by two static panels: In the
upper panel, the densities |u(x,t)|2 and |v(x,t)|2 are given for a fixed
instant of time t = 0.8, with the lower panel given for t = 0.825,
where the period of oscillations is about 0.05 (as verified from Fig. 11).
The corresponding values of �0 and �1 are indicated inside the panels.
The other parameters are such that β = γ = 1, kL = 8. All quantities
are in dimensionless units.

�0 = 40 (upper) and 60 (lower). In both, we are plotting the
perturbed case considering the amplitude of the oscillations
given by �1 = 0.05�0 and 0.1�0, with the frequency ω ≈
2π× the linear frequency verified in the transient time interval
(∼126–127). The nonperturbed case (�1 = 0) is also shown
for comparison in both cases. We should emphasize that in
general, the Josephson oscillating behavior is about the same
as for the unperturbed case �1 = 0, except close to the specific
values for ω and �1 where resonant interference behaviors are
detected. With Fig. 12, for a time interval of a half period
of the Josephson oscillations, we represent the profiles of the
two component densities [|u(x,t)|2 and |v(x,t)|2] for the case
shown in the upper panel of Fig. 11 with �0 = 40 and �1 = 2
(the other parameters are the same). The oscillation dynamics
is represented in two panels, given for t = 0.8 (upper panel)
and t = 0.825 (lower panel), considering that a complete
period is close to ≈0.05. The panels indicate (through the
corresponding densities) the atom-number oscillation between
the components

For a long-time interval, resonant behaviors are expected
to occur when considering cases where the natural frequency
of the oscillations is still surviving in the unperturbed case.
For that, in Fig. 13, we are showing results for a simulation
with kL = 4 and �0 = 10, with β = 0.5 and initial phase π/8.
In this case, by taking �1 = 4, we can observe a resonant
interference that occurs for ω1 ∼ 2�0. For this case, the striped
soliton profiles of both components are also represented in the
two lower panels of the figure. In the left panel, we have them
at t = 0, and in the right panel, for t = 8.

To conclude our study related to striped solitons and
resonant interference effects, we present results obtained in
longer-time intervals for the case in which the unperturbed

1.0 3.0 5.0 7.0t
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t = 0 t = 8

33− x
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FIG. 13. Atom-number oscillations, N1 − N2 (upper panel), for
striped solitons obtained in region II, for kL = 4, �0 = 10, with
corresponding resonant behavior that occurs at ω = 21.1. In the
two lower panels, we show the densities for the two components
at t = 0 and t = 8, where the second case shows the effect of the
time perturbation that was introduced. The other parameters are
γ = 1, β = 0.5, and the initial phase φ = π/8. All quantities are
dimensionless.

Raman is given by �0 = 10, with kL = 4, as in Fig. 13, but
with a much smaller amplitude of the modulations such that
�1 = 0.05�0. The investigation of the interval of ω where
interferences can be found is shown in Fig. 14, considering a
small initial phase of oscillations between components given
by φ = π/8. As shown by the set of five panels (for 1 � t � 8)
with given values of ω, resonant interference effects due to the
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FIG. 14. Atom-number oscillations, N1 − N2, for striped solitons
in region II, for kL = 4 and �0 = 10, with fixed very small amplitude
�1 = 0.5 and the initial phase between components given by φ =
π/8. The frequency ω of the time-perturbed Raman is varied within
the region where resonant interferences are verified. For ω = 32, the
unperturbed case is also shown by a dashed line. As in Fig. 13, the
nonlinear parameters are γ = 1 and β = 0.5. All quantities are in
dimensionless units.
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FIG. 15. The case with ω = 32 (solid lines) was selected from
Fig. 14, including the unperturbed case (black dashed line). In the
lower panel, we have a larger-time interval (0 � t � 16), with the
middle and upper panels having smaller intervals given by 2 � t � 7
and 10 � t � 16, respectively. All quantities are dimensionless.

perturbation are verified only in the interval 39 > ω > 22, with
maxima interferences occurring for ω ∼ 32 (the middle panel,
where we have also included with a dashed line the unperturbed
case for comparison). The results for ω > 39 and < 22 are
almost identical to the nonperturbed case, �1 = 0. Therefore,
we select the case with ω = 32 to show in more detail the
oscillating behavior, which is presented in Figs. 15 and 16. In
the lower panel of Fig. 15, we consider a larger-time interval
with 0 � t � 16 (lower panel). The middle panel (2 � t � 7)
serves to show the change in the frequency of the oscillations,
such that for each two cycles another cycle is emerging, which

FIG. 16. Density plots |u(x,t)|2, |v(x,t)|2, and |u(x,t)|2 +
|v(x,t)|2, corresponding to the case shown in the lower set of three
panels of Fig. 15, at positions x for the time interval 1 < t < 3. All
quantities are in dimensionless units.

can be verified for 10 � t � 16. In all three given panels, for
comparison we include, by a dashed line, the unperturbed case.

IV. HIGH-FREQUENCY MODULATIONS
AND AVERAGED GP EQUATIONS

In the case in which we have rapidly and strongly varying
Raman oscillations�(t), it is useful to derive the corresponding
averaged GP equation such that one can reduce the time-
dependent modulated Raman frequency to the constant one
�0 by renormalizing the spin-orbit coupling and the nonlinear
parameters, as we show in this section. By matching the
averaged results with the full-numerical ones, obtained with
real-time evolution, we also verify numerically how fast and
strong the time oscillations should be in order to validate the
averaging approach. In order to derive the average over a rapid
modulations system of equations, we first apply the following
unitary transformation [15,21] in Eq. (1):

� ≡
(

U

V

)
=

(
cos(q) i sin(q)
i sin(q) cos(q)

)(
u

v

)
, (16)

where q ≡ q(t) = (�1/ω) sin(ωt) is given by the requirement
that the time-dependent part of the Raman frequency does
not appear explicitly in the coupled equation for �. When
performing the time averaging of the interactions together
with the SOC parameter kL, the parameters of the nonlinear
interaction also have to be renormalized. They are replaced
by parameters that contain the zero-order Bessel function,
considering that

1

2π

∫ 2π

0
d(ωt) exp

[
in�1

ω
sin(ωt)

]
= J0

(
n�1

ω

)
. (17)

Then, by defining χ ≡ 2�1/ω, the coupled equation, averaged
over the period of rapid modulations, with Vtr = 0, can be
written as [15]

i
∂�

∂t
=

[
−1

2

∂2

∂x2
− ikLJ0(χ )σz

∂

∂x
+ �0σx

](
U

V

)

−
(

α+|U |2 + α1|V |2 α0U
∗V

α0V
∗U α−|V |2 + α1|U |2

)(
U

V

)
,

(18)

where

α0 ≡
(

β − 1 + γ

2

)
1 − J0(2χ )

4
,

α± ≡ α0 + 1 + γ

2
± 1 − γ

2
J0(χ ), (19)

α1 ≡ β − 2α0.

In the case of gauge symmetry, with β = γ = 1, we have
α0 = 0 and αi �=0 = 1, i.e., the nonlinear part of the above
coupling equation for (U,V ) is exactly the same as the ones
obtained for (u,v), such that the time averaging is only
renormalizing the SOC parameter kL to

κeff = kLJ0

(
2�1

ω

)
, (20)

as one can verify by comparing the coupled Eqs. (18) with
(2). This approach for tuning of the SOC parameter has been
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confirmed recently in an experiment reported in Ref. [17].
Therefore, when considering rapid variations of the Raman
frequency, the spin-orbit coupling kL can be tuned in order to
control the solitons in a BEC with SOC. In particular, it can
be quite useful to transform striped solitons to regular solitons,
and vice versa. With the appropriate ratio between amplitude
�1 and frequency ω of the Raman oscillations, a given value of
kL for region II, where k2

L > �0, can be changed to κ2
eff < �0,

where we obtain regular soliton solutions, such that all the
theory developed before (in Secs. II and III) for the constant
Raman frequency can be applied.

The above can be exemplified by the results shown in Fig. 3,
which are for regular soliton solutions, with kL = 4 and �0 =
80 and 20, respectively. These results are for region I, but can
also be applied to the case in which we originally have kL larger
than �0, if the time modulation of the Raman frequency �(t),
given by Eq. (5), is such that the ratio between �1 and ω will
give us κeff = kLJ0(χ ) = 4. We could initially take kL = 10,
for example, as it is larger than �0 in both of the cases shown
in Fig. 3, with the parameters of the time-modulating Raman
such that J0(χ ) = 0.4.

When considering other values for the nonlinear parame-
ters, as a general remark we noticed that stable soliton solutions
are obtained for attractive two-body interactions. Another
remark, when considering the averaged approach, is that for
β �= 1, we can also have conditions with zero in the off-
diagonal terms of the nonlinear two-body matrix, which brings
Eq. (18) to the same format as Eq. (2). This happens for β =
(1 + γ )/2, with α0 = 0, α1 = β, and α± = β ± (1 − β)J0(χ ).
For the more general cases, as for α0 �= 0 or 2β �= (1 + γ ), new
terms appear that correspond to the effective four-wave mixing
(∼U 2V ∗,V 2U ∗). These terms can lead to new possibilities,
such as a way to control the atom-number oscillations between
two components (internal Josephson effect [35,36]).

A. The solitonic solutions

The solitonic solutions for the averaged GP equations can
be found by applying the multiscale method [11] to the two
regions defined by the linear spectrum, which are given by
Eq. (3). By using this multiscale method for values of the
chemical potential near the bottom of the dispersive curve, with
μ = −�0 − ε2w0 (ε � 1), where ω0 is the free parameter, in
region I (see Fig. 1), we obtain

u(I )
s = ε

√
2w0

α+ + α1 + α0
sech

(
ε

√
2w0

	eff
x

)
, (21)

v(I )
s = −u(I )

s , 	eff = 1 − κ2
eff

�0
. (22)

In region II, where κ2
eff > �0 and two minima exist in the

momentum space, we can take the chemical potential as
μ = wmin − ε2w0 (see Fig. 1), with

wmin = 1
2κ2

0 − κ2
eff , κ0 ≡ ±

√
κ2

eff − �2
0

/
κ2

eff , (23)

and look for solutions of the form (u,v) = ε(A,B) exp(±iκ0x).
For the result, we obtain a bright-soliton solution with the form

given by(
u(II )

s

v(II )
s

)
=

(
�0

−κeff (κeff ± κ0)

)
εf (x)e(±iκ0x−iμt)

√|κeff ± κ0|
, (24)

where

f (x) =
√

2w0κeff√
α+

(
κ4

eff + κ2
effκ

2
0

) + (α1 + α0)�2
0

× sech

(
ε

√
2w0κ

2
eff

κ2
0

x

)
. (25)

Analogically, the striped soliton solution can be found as
linear superpositions of solutions represented by Eq. (24).
As already known, these solutions are used to describe the
longitudinal and transversal spin polarizations of the solitons
[11], with

〈σz〉 = 1

N

∫ ∞

−∞
dx(|u|2 − |v|2),

〈σx〉 = 1

N

∫ ∞

−∞
dx(u∗v + uv∗), (26)

N ≡
∫ ∞

−∞
dx(|u|2 + |v|2).

In region I, where �0 < κ2
eff , the solitons are fully polarized

along the x axis. The same approach is valid for striped solitons
in region II. However, the polarization along z is not zero for
solitons with momentum k = ±κ0. From Eqs. (21)–(25), we
obtain

〈σz〉(II ) = −
√

1 − �2
0

/
κ4

eff , 〈σx〉(II ) = − �0

κ2
eff

. (27)

Thus, by varying the ratio χ , and so κeff , we can observe quan-
tum phase transition in the pseudospin polarization 〈σz〉(II )

of the soliton. These results for the soliton polarization are
analogous to the ones obtained for the repulsive BEC in the
framework of the Dicke model in [15].

With the understanding that the results obtained in this
section are valid in a more general context for constant
values of the Raman frequency, with Fig. 17 we show the
dependence of the energy and chemical potential on the number
of atoms N for the case in which �0 = 0, β = γ = 1, kL = 8,
when considering χ = 2�1/ω = 3.7152 (with both �1 and
ω very large), which give us J0(χ ) = −0.4. Note that in this
simple case, we have, for the dispersion relation (3), w±(k) =
k(k/2 ± kL), with the signal of the give SOC moving from
the original kL = 8 to a negative one, κeff = −3.2. Therefore,
after considering the time averaging, in this particular case with
�0 = 0, we obtain w±(k) = k(k/2 ± κeff ) such that both w+
and w− have the same shape as w− shown in Fig. 1, but with
minima given at k = −κ0 (for w+), and k = κ0 (for w−). As we
are in region II, even after the averaging, the soliton solutions
are not regular ones and are expected to have shapes with
some oscillations. In Fig. 18, we illustrate the kind of solutions
we obtain by presenting the real and imaginary parts of the
wave-function components when considering the particular
case with N = 6.86, E = −48.6, and μ = −11.
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FIG. 17. The energy E (solid line) and chemical potential μ

(dashed line) are shown as functions of the atom number N by
considering the parameter β = γ = 1, kL = 8, �0 = 0, and χ =
2�1/ω = 3.7152 [J0(χ ) = −0.4, κeff = −3.2], with ε2w0 = 0.4. All
quantities are in dimensionless units.

B. Full numerical versus averaged results

To conclude this section, we compare the time-evolution
results obtained with the effective time-averaging approach
(where the SOC parameter is κeff ) with the ones obtained in real
time, with the SOC parameter kL and explicit Raman frequency
modulated by �1 cos(ωt).

With Figs. 19–21, we exemplify our results for the compar-
ison of averaged results with real-time-dependent numerical
simulations. All the results for the time-averaged formalism
that are shown in these examples are verified to be numerically
very stable in the time evolution.

The results given in Fig. 19 are for region I, with �0 =
120 (>k2

L), by considering the SOC parameter kL = 8. For the
time-dependent Raman frequency, we assume �1 and ω such
that χ ∼ 2.4, implying that J0(χ ) = 0. Therefore, in this case,
the averaged SOC parameter is κeff = 0. As shown in the four
panels, the averaged results present good agreement with the
real-time simulations when �1 is about 10 times or more larger
than �0.

-2 -1 0 1 2
x

-1

0

1

2

(U
,V
)

Re(U)=-Re(V)
Im(U)=Im(V)

FIG. 18. The real (solid blue line) and imaginary (dashed red line)
parts of the wave-function components are shown for E = −48.6,
N = 6.86, μ = −11, with the other parameters as in Fig. 17. All
quantities are in dimensionless units.
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FIG. 19. Real-time evolution of the soliton profile for �0 = 120,
kL = 8, with β = γ = 1, considering several values of �1 (shown
inside the panels) and ω, such that J0(χ ) = 0 (χ = 2.4). At t = 0, the
results in each of the panels coincide with the ones obtained with the
averaged formalism (where κeff = 0). At larger times (represented by
t = 4), we show that the agreement between real-time and averaged
results is improved as one increases �1. The other parameters are
β = γ = 1. All quantities are in dimensionless units.

For region II, we illustrate, with Figs. 20 and 21, two
quite different combinations of Raman frequency and SOC
parameters. In Fig. 20, we present our results obtained for kL =
8 and �0 = 12, with �1 and ω such that χ ∼ 1.52. As J0(χ ) =
1/2 and κeff = 4, we are in region II (�0 < κ2

eff ). The results are
shown for different values of �1 = 50χ = 76 (lower panel),

0

0.4

0.8

|ψ
(x

,t)
|2

t=0
t=2
t=8

0

0.4

0.8 t=0
t=2
t=8

−2 −1 0 1 2
x

0

0.4

0.8 t=0
t=2
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Ω0=12, kL=8

Ω0=12, kL=8

Ω0=12, kL=8

Ω1=50χ 

Ω1=100χ

Ω1=200χ

FIG. 20. Evolution of the soliton profile for �0 = 12, kL = 8,
with β = γ = 1, in three panels for different values of �1, with χ =
2�1/ω = 1.52 [such that J0(χ ) = 1/2], implying that κeff = 4. In this
case, we have κ0 = 2.65. All quantities are in dimensionless units.
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FIG. 21. The evolution of striped soliton profiles are shown in
three panels, for �0 = 20 and kL = 20, considering a few values of
�1 and ω in the real-time propagation. For t = 0, the results are the
same ones obtained by the averaged formalism, where κeff = −8. In
all the frames, the ratio between the parameters �1 and ω is fixed,
given by χ = 2�1/ω = 3.7152, implying J0(χ ) = −0.4. In this case,
we have κ0 = 7.60. All quantities are in dimensionless units.

= 100χ = 152 (middle panel), and = 200χ = 304 (upper
panel). The parameters used in this case correspond to one
of the examples presented in Fig. 9 for Josephson oscillations,
where we have constant �0 = 12, with kL = 4. We should
note that the striped solitons shown in Fig. 20 have the main
maximum at the center, with only one pair of maxima visible
on each side, due to the choice of parameters which are close to
the border between the regions for striped and regular solitons.

In Fig. 21, we consider a case where the effective SOC
becomes negative, and we are more deeply inside region II.
Departing from a large value of kL = 20, with the combinations
of �1 and ω, such that by fixing χ = 3.7152 and J0(χ ) =
−0.4, we have κeff = −8. The results are shown in the three
panels in Fig. 21. For comparison, in all three panels, we also
present the averaged results, which are equal to the unperturbed
case with t = 0. From our study of this case, we should also
observe that for smaller values of �1, the real-time solutions
become unstable, collapsing in a short-time interval. The
real-time solutions shown in the lower panel, for �1 = 175χ ,
already indicate this instability. When considering�1 = 150χ ,
the solution was already collapsed even at t = 2.

By considering our results, exemplified in Figs. 19–21, as
a general remark for the case of fast-time oscillations in the
Raman frequency, our conclusion is that good agreements be-
tween the averaged results with the full-numerical simulations
can be verified only for �1 about 10 times larger than �0

(where the frequency ω is of the order of �1), which is an
approximate minimal condition for the time modulations in
the Raman frequency in order to keep the soliton solutions
stable during time evolution.

In the next section, we summarize this work with our main
conclusions.

V. CONCLUSIONS

In the present work, we have studied the existence and dy-
namics of solitons in Bose-Einstein condensates (BECs) with
spin-orbit coupling (SOC) and attractive two-body interactions
by considering two coupled atomic pseudospin components
with general time-dependent Raman frequency, which can be
constant, or slowly or rapidly modulated in time. For that, after
defining the two possible regions where two different kinds of
soliton solutions exist, i.e., regular or striped bright solitons, we
first consider the Raman frequency varying slowly and linearly
in time, such that we can study the transition between the two
kinds of soliton solutions: from regular to striped ones, and
vice versa. The regions are established by the relation between
the SOC parameter kL and the constant part of the Raman
frequency, �0, such that we have regular solitons in region I,
when �0 > k2

L, and striped solitons in region II, for �0 < k2
L.

Next, we study the internal Josephson oscillations between the
atom numbers in soliton components, which are controlled by
a constant or periodically time-oscillating Raman parameter.
Different parameter configurations are studied for SOC in
BEC, with parametric resonances indicating a mechanism to
control the soliton parameters, as well as the evolution of the
solitons center of mass. As shown, we also present a variational
analysis, valid particularly in the case that we obtain regular
bright-soliton solutions. The full-numerical simulations have
confirmed the corresponding predictions.

In the limit of high frequencies, the system is described by
a time-averaged Gross-Pitaevskii formalism with renormal-
ized nonlinear and SOC parameters and additional modified
phase-dependent nonlinearities. Therefore, by comparing full-
numerical simulations with averaged results, we have studied
the lower limits for the frequency of the Raman oscillations in
order to obtain stable soliton solutions. The results are shown
in a few examples for both regions I and II. One should note
that due to the normalization of the nonlinear interactions, new
terms can emerge in the nonlinear coupling of the averaged
system for BECs with tunable SOC, when compared with the
original nonaveraged formalism. Corresponding to the phase-
dependent nonlinear coupling, we have a term ∼α0 appearing
in the off-diagonal matrix terms of the nonlinear coupling. This
term can play an important role for nonstationary processes in
BECs with SOC, as well as in the Josephson oscillations be-
tween components of solitons with nonzero phase differences.
This matter requires further separate investigation.

The expected relevance of the present study is in the predic-
tion of some effects as well as in the corresponding parameter
control, in a possible BEC experiment, such as in 7Li with
attractive interatomic interactions, where the SOC can be en-
gineered as an effective two-level atom by a uniform magnetic
field B with two Raman laser beams. In this example, we have
the linear transverse trap frequency, ω⊥/(2π ) = 1 kHz, the
number of atoms N = 103, and the wavelength of the Raman
lasers given by λ = 804 nm. Therefore, the Raman frequency
can vary in the interval (0.1–10)EL, where EL = h̄2k2

L/2m

is the recoil energy and kL = 2π/λ. For �0 = 0.1EL/h̄, we
obtain �0 = 2π × 30 kHz. Then the frequency of modulations
is as follows: for the resonant case, the dimensionless ω = 60
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corresponds to ω = 2�0 = 60 kHz, and for the high-frequency
limit, ω = 300 corresponds to ω = 10�0 = 300 kHz.
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