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Quantum Landau damping in dipolar Bose-Einstein condensates
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We consider Landau damping of elementary excitations in Bose-Einstein condensates (BECs) with dipolar
interactions. We discuss quantum and quasiclassical regimes of Landau damping. We use a generalized wave-
kinetic description of BECs which, apart from the long-range dipolar interactions, also takes into account the
quantum fluctuations and the finite-energy corrections to short-range interactions. Such a description is therefore
more general than the usual mean-field approximation. The present wave-kinetic approach is well suited for the
study of kinetic effects in BECs, such as those associated with Landau damping, atom trapping, and turbulent
diffusion. The inclusion of quantum fluctuations and energy corrections changes the dispersion relation and the
damping rates, leading to possible experimental signatures of these effects. Quantum Landau damping is described
with generality, and particular examples of dipolar condensates in two and three dimensions are studied. The
occurrence of roton-maxon excitations, and their relevance to Landau damping, are also considered in detail. The
present approach is mainly based on a linear perturbative procedure, but the nonlinear regime of Landau damping,
which includes atom trapping and atom diffusion, is also briefly discussed.
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I. INTRODUCTION

Many-body effects in quantum states of matter form prob-
ably one of the most challenging topics of research in modern
physics. In this context, the phenomenon of superfluidity is
a prominent example, fascinating and thrilling scientists for
almost a century [1,2]. An enormous advance in the under-
standing of superfluidity was due to Landau, who introduced
the concept of quasiparticles [3]. In order to explain the
special thermodynamic features of 4He, Landau postulated
the existence of two types of excitations: phonons, the long-
wavelength acoustic waves, and rotons, the gapped excitations
taking place at finite wave vectors k. Initially understood
as localized vortices, rotons have been observed in neutron-
scattering experiments and are now understood to be related to
the correlated nature of the interactions in liquid helium [4].

Another physical system featuring roton excitations is
that of dipolar gases [5]. Dipolar Bose-Einstein condensates
(BECs) differ from their short-range interacting counterparts
[6,7] by the addition of a long-range, anisotropic potential
[8]. In some cases, a convenient manipulation of external
electric or magnetic fields can nearly remove the short-range
potential, and dipolar forces become dominant [9]. Contrary
to what happens in liquid helium, where rotons are attributed
to strong correlations, low-dimensional dipolar gases feature
rotons as a consequence of the long-range character of the
dipole-dipole potential [10]. The experimental observation of
rotons in dipolar BECs has recently been reported in Ref. [11].

*titomend@tecnico.ulisboa.pt
†hugo.tercas@tecnico.ulisboa.pt
‡gammal@if.usp.br

Meanwhile, BECs loaded in an optical cavity also became
known for exhibiting roton modes [12,13].

At the mean-field level, dipolar BECs are described by a
nonlocal Gross-Pitaevskii (GP) equation, accounting for the
long-range, anisotropic dipolar potential [8]. Nevertheless,
generalized and more accurate forms of the GP equation have
been recently proposed [14,15], displaying cubic and quar-
tic nonlinearities. The usual cubic term describes two-body
collisions at zero energy, and the quartic term represents the
Lee-Huang-Yang (LHY) correction resulting from quantum
fluctuations [16–19]. The LHY correction has been shown to
be essential in explaining the appearance of droplets in dipolar
condensates [20,21]. Additional cubic terms, resulting from a
first-order energy correction to the two-body collisions, have
also appeared in the literature [22].

Landau damping, i.e., the damping of the collective ex-
citations via the isentropic transfer of their energy to the
particles of the system [23,24], has been investigated in the
past for the case of contact interacting BECs [25–28], and
its occurrence in dipole BECs has recently been addressed
[29]. In the present paper, we extend the previous analysis to
consider both the quantum and semiclassical regimes. We also
predict additional features, such as atom trapping, quasilinear
diffusion, and kinetic instabilities. Our approach is based on the
wave-kinetic (WK) description of the system. This alternative
approach is particularly powerful to describe kinetic processes
(i.e., wave-particle and wave-wave interactions), such as those
taking place in the mechanism of Landau damping. The
WK description of dipolar BECs is based on the Wigner
function associated with the macroscopic wave function of
the system, and follows by employing the Wigner-Moyal
procedure [30,31], finding application in short-range BECs at
finite temperature [32]. In this paper, we use a generalized WK
equation, allowing us to establish a direct relation between the

2469-9926/2018/97(6)/063610(8) 063610-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.063610&domain=pdf&date_stamp=2018-06-12
https://doi.org/10.1103/PhysRevA.97.063610


J. T. MENDONÇA, H. TERÇAS, AND A. GAMMAL PHYSICAL REVIEW A 97, 063610 (2018)

initial equilibrium distribution of the atoms in a dipolar BEC
and the corresponding damping of the collective excitation,
without the need to distinguish the initial and the final states of
the decay, as is the case of the calculations based on Fermi’s
“golden rule” [29]. Moreover, our formalism automatically
accommodates the two-body collisions and LHY corrections,
making it particularly appealing for future applications with
quantum droplets [11].

This paper is organized as follows. In Sec. II, we present
the WK equation for dipolar BECs, which is the basic equation
of this paper. In Sec. III, with the aim of benchmarking our
description with respect to more standard techniques used in
the cold-atom community, we derive the dispersion relation
of elementary excitations. As particular cases, we consider
typical three-dimensional (3D) and quasi-two-dimensional
(2D) configurations. The 3D case contains unstable regions
in the range of large wave numbers, and the quasi-2D case
features the roton-maxon dispersion relation [10,11,19]. In
Sec. IV, the kinetic Landau damping is considered. We dis-
cuss the cases of a finite temperate BEC and show that the
dipolar interactions modify the Landau damping rate. The
quantum and the quasiclassical regimes are examined. We
further discuss the possible occurrence of kinetic two-stream
instabilities and their relation with the fluid instability studied
in Ref. [33]. We show that Landau damping can still exist for
condensates with a finite size, even at zero temperature. Finite
dimensions imply the existence of an effective temperature, as
a consequence of the velocity broadening associated with the
Heisenberg uncertainty principle. This effective temperature
is estimated to be quite small when compared to the critical
condensation temperature. However, we argue that its effect
may become appreciable near the roton minimum, for which
the phase velocity approaches zero. In Sec. V, we discuss the
limits of validity of the linear Landau damping regime. Such a
discussion includes the main processes that could occur in the
nonlinear regime, namely, atom trapping and atom diffusion.
The former is a consequence of finite amplitude oscillations,
and relies on the possible existence of trapped quantum states,
while the latter takes place if a broad spectrum of excitations
exists. Finally, in Sec. VI, we state some conclusions.

II. WAVE-KINETIC EQUATION

We consider a dipolar condensate, as described by a modi-
fied GP equation of the form

ih̄
∂ψ

∂t
= (HGP + H ′)ψ, (1)

where ψ ≡ ψ(r; t) is the condensate order parameter and HGP

is the usual GP Hamiltonian as determined by

HGP = − h̄2

2m
∇2 + V0(r) + g |ψ(r,t)|2. (2)

Here, V0(r) is the confining potential, g = 4πh̄2a/m is the
strength of the short-range interaction, and a is the scatter-
ing length. The Hamiltonian H ′ in Eq. (1) describes three

additional effects and can be written as

H ′ = Q|ψ(r,t)|3 + 1

2
χ [∇2|ψ(r,t)|2]

+
∫

Ud (r − r′)|ψ(r′,t)|2dr′. (3)

The first term describes the LHY correction due to
quantum fluctuations, determined by the coefficient Q =
g(32/3

√
π )a3/2. The second term is due to the finite-energy

range of atom collisions, and the corresponding coefficient is
χ = g(a − re/2), with re being the effective range obtained
from the second-order expansion of the phase shift [14].
Finally, the third term describes the long-range dipolar inter-
actions and is characterized by a dipole interaction potential
Ud , to be specified later.

Equation (1) constitutes a proper description of the quantum
corrected dynamics of a dipolar condensate. Alternatively, we
can describe the condensate considering the autocorrelation
function. This can be done invoking the Wigner function,
which can be defined as

W (q,r,t) =
∫

ψ∗(r − s/2,t)ψ(r + s/2,t) exp(iq · s)ds. (4)

Starting from the above generalized GP equation, and ap-
plying the well-known Wigner-Moyal procedure (see, e.g.,
[30,32–34] and references therein), we can derive an evolution
equation for W , of the form

ih̄

(
∂

∂t
+ vq · ∇

)
W =

∫
Vk(t)�W exp(ik · r)

dk
(2π )3

, (5)

where vq = h̄q/m is the atom velocity, and �W is defined as

�W = W− − W+, W± ≡ W (q ± k/2,r,t). (6)

The quantity Vk(t) in Eq. (5) is the spatial Fourier transform
of the total potential V (r,t). We should notice that the Wigner
distribution is normalized to the local atom density as

n(r,t) ≡ |ψ(r,t)|2 =
∫

W (q,r,t)
dq

(2π )3
. (7)

This allows us to write the total potential in Eq. (1) as V (r,t) =
[V0 + gn + Qn1/2 + χ (∇2n)/2] + Vd (r,t), where the dipolar
term is determined by

Vd (r,t) =
∫

dq
(2π )3

∫
dr′Ud (r − r′)W (q,r′,t). (8)

From the convolution theorem, we have∫
Ud (r − r′)W (q,r′,t) dr′

=
∫

Ud (k)Wk(q,t) exp(ik · r)
dk

(2π )3
, (9)

where Ud (k) and Wk(q,t) are the Fourier transforms of the
dipolar potential Ud (r) and the quasiprobability W (q,r,t),
respectively. Plugging into Eq. (8), we can obtain

V (r,t) =
∫

Vk(t) exp(ik · r)
dk

(2π )3
, (10)
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with

Vk(t) = V0(k) +
[
g − k2

2
χ + Ud (k)

]
nk(t)

+Q

∫
n3/2(r,t) exp(−ik · r)dr, (11)

with nk(t) being the Fourier transform of Eq. (7). The wave-
kinetic equation in Eq. (5), together with the expression for
Vk(t) in Eq. (11), provides the full phase-space description of
a dipolar BEC in the presence of quantum fluctuations.

III. DISPERSION RELATION

In order to discuss the elementary excitations of the dipolar
BEC, we assume that the Wigner function can be divided in
two distinct parts, W = W0 + W̃ . Here, W0 is the equilibrium
distribution describing the condensate in steady state, and W̃

is a small perturbation such that |W̃ | � |W0|, describing the
elementary excitations of the system. For simplicity, we neglect
the trap and assume a plane-wave perturbation of the form

W̃ (q,r,t) = W̃k(q) exp(ik · r − iωt), (12)

whereω is the mode frequency. Linearizing Eq. (5) with respect
to the perturbed quantities, we can easily get

W̃k =
[
g + Q

√
n0 − χ

2
k2 + Ud (k)

]
�W0

h̄(ω − k · vq)
ñk, (13)

where �W0 = W0(q − k/2) − W0(q + k/2) and ñk is the den-
sity fluctuation. Integrating over the momentum distribution,
we can then obtain a dispersion relation of the form

1−
[
g+Q

√
n0− χ

2
k2+Ud (k)

] ∫
�W0

h̄(ω − k · vq)

dq
(2π )3

= 0,

(14)

which can explicitly be recast in the form

1 −
[
g + Q

√
n0 − χ

2
k2 + Ud (k)

] ∫
W0(q)

h̄

[
1

(ω− − k · vq)

− 1

(ω+ − k · vq)

]
dq

(2π )3
= 0, (15)

where ω± = ω ± h̄k2

2m
. In what follows, we study the dis-

persion relation for a zero-temperature system. This allows
us to describe the equilibrium in terms of δ-distributed
particles:

W0(q) = (2π )3n0δ(q − q0), (16)

where n0 is the unperturbed density and q0 is the net momen-
tum of the gas, associated with the drift velocity v0 = h̄q0/m.
As such, Eq. (15) is then reduced to

1 −
[
g + Q

√
n0 − χ

2
k2 + Ud (k)

]
n0

h̄

[
1

(ω− − k · v0)

− 1

(ω+ − k · v0)

]
= 0. (17)

Rearranging terms and using the definition of the sound
speed, cs =

√
gn0/m, the latter can also be written as

(ω − k · v0)2 = k2c2
s

[
1 + Q

g

√
n0 − χ

2g
k2 + 1

g
Ud (k)

]

+ h̄2k4

4m2
. (18)

The two-stream configuration considered in Ref. [33] can be
easily accounted for here if one replaces Eq. (16) by W0(q) =
4π3n0[δ(q − q0) + δ(q + q0)]. A detailed investigation of this
effect, although out of the scope of this paper, would reveal
interesting aspects of the phase-space properties of dipolar
gases, in particular how one could explore dynamical insta-
bilities to generate nonlinear structures, such as solitons in
one-dimensional configurations [35,36].

It is instructive to compute the product of the phase velocity
vφ = ω/k and the group velocity vg = ∂ω/∂k. Assuming a
condensate at rest (v0 = 0), we obtain

vφvg = c2
s

[
1 + Q

g

√
n0 + 1

g
Ud (k)

]
+ 4k2

(
h̄2

4m2
− χ

2g

)
.

(19)

This shows that the product vφvg is nearly equal to the square of
the sound speed, c2

s , with corrections coming from the quantum
(Bohm) dispersion term and from the three different processes
included in the present model (dipolar potential, quantum
fluctuations, and finite-energy range of close collisions). The
long-range dipole-dipole interaction potential is explicitly
given by [8,37,38]

Ud (R) = Cdd

4π

1 − 3 cos2 θ

|R|3
(

3 cos2 ϕ − 1

2

)
, (20)

where Cdd is the (magnetic or electric) dipolar interaction
strength, θ is the angle between the relative position R = r − r′

and the direction of the external polarization field, and ϕ is the
angle between the orientation of the dipoles and the z axis.
Taking ϕ = 0, we obtain the Fourier transform

Ud (k) = Cdd

(
cos2 θk − 1

3

)
, (21)

where θk is the angle between the wave vector k and the z axis.
Replacing this in Eq. (18), and assuming a condensate at rest
(v0 = 0), we obtain the dispersion relation

ω2 = k2c2(θk) + h̄2k4

4m2
. (22)

where c(θk) is the angle dependent Bogoliubov velocity,
defined as

c2(θk) = c2
s

[
1 + Q

g

√
n0 − k2

2g
χ + η

(
cos2 θk − 1

3

)]
. (23)

Here, η = Cdd/g is the ratio between the dipole and contact
potential strength. As we can see, the dipolar interaction in-
troduces important qualitative corrections to the characteristic
sound velocity, which can become imaginary for large values
of the parameter η [8]. This reflects the anisotropic nature of
the dipolar potential. In particular, a critical wave number kc
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can be defined, where ω2 = 0, as

k2
c = c2

s

[
η

(
1

3
− cos2 θk

)
−

(
1 + Q

g

√
n0

)](
4m2

h̄2 − χ

2g

)
.

(24)

This is positive for θk � π/2 and η � 3 [8]. In such case,
large-scale perturbations corresponding to k � kc become
unstable, with a finite growth rate determined by ω2 � 0. This
is physically relevant for (kcL) � 1, where L is the typical size
of the condensate.

Quasi-two-dimensional dipolar Bose gases

Another interesting example is the quasi-2D condensate.
If a BEC is strongly confined along the z axis, with a size lz
much smaller than its transverse dimension l⊥, we can still
use the same WK equation, only depending on (x,y) and
(kx,ky). In this case, g is replaced by a renormalized coupling
parameter, g2D = g/(3

√
2πlz), and the Fourier transformation

of the quasi-2D dipole-dipole potential simply reads [29]

Ud (k) = CddF (klz/
√

2), (25)

where k =
√

k2
x + k2

y and the function F (x), with x = klz/
√

2,
is defined as

F (x) = 1 − 3
2

√
πx exp(x2) erfc(x). (26)

Here, we have used the complementary error function, defined
by

erfc(x) = 2√
π

∫ ∞

x

exp(−t2) dt, (27)

in terms of which the dispersion relation reads

ω2 = k2c2
2D

[
1 + Q

g

√
n0 − k2

2g
χ + εddF (klz/

√
2)

]
+ h̄2k4

4m2
.

(28)

Here, we have defined c2
2D = g2D(n0/m) and εdd = Cdd/g2D.

It is well known that Eq. (28) contains the roton-maxon pair
[10]. In some extreme conditions, this can even lead to the
formation of a supersolid, where ω2 becomes negative for
a limited interval of wave numbers k (and not over a large
region 0 � k � kc, as in the above 3D example). In Fig. 1,
we illustrate the features of Eq. (28). We observe the usual
phononlike character of the spectrum for low k; for finite
values of k, a roton minimum develops (see dotted line).
Moreover, we can observe that the quantum LHY correction
(dot-dashed line) hardens the roton mode, resulting in an
overall stabilization of the system. This effect is at the origin of
the dipolar droplets [11,39]. Quantum-mechanically stabilized
droplets were originally introduced by Petrov in the context
of Bose-Bose mixtures [40]. Conversely, the inclusion of the
finite-range corrections favors the roton instability (solid line),
and the spectrum exhibits an imaginary part (dashed line). If
it takes place, the latter is responsible for the formation of
crystalline structures [41].

FIG. 1. Dispersion relation of elementary phonon modes in a
quasi-2D dipolar condensate, displaying a roton-maxon configura-
tion. The phase velocity vφ = ω/k decreases in the roton region
and increases in the maxon region, thus changing the value of the
corresponding Landau damping rates. The dotted line depicts the
mean-field situation (Q= 0 and χ = 0). The stabilization of the roton
instability due to the LHY quantum correction is represented for
Q = 0.2g/

√
n0 (dot-dashed line). The inclusion of the finite range

of the atom collisions enhances the roton instability, here depicted for
χ = 0.08g/l2

z (solid line). The dashed line represents the imaginary
part of ω in Eq. (28). In all situations, we have set εdd = 8.2.

IV. LANDAU DAMPING

The wave-kinetic description is particularly well suited to
describe Landau damping and kinetic (phase-space) instabili-
ties, as shown next. For that purpose, we go back to Eq. (15),
which can be rewritten in the form

1 − g′(k)

h̄k

∫
G0(u)

[
1

(u − ω+/k)
− 1

(u − ω−/q)

]
du

2π
= 0,

(29)

with g′(k) = [g + Q
√

n0 − k2χ/2 + Ud (k)]. Here, u and q

represent the atom velocity and momentum components par-
allel to the direction of propagation, according to

vq = u
k
k

+ v⊥, q = q
k
k

+ q⊥. (30)

We have also used the reduced distribution G0(q), such that

G0(q) =
∫

W0(q,q⊥)
dq⊥

(2π )2
. (31)

The integral in Eq. (29) can be decomposed as∫
G0(u)

(u − v±)
du = P

∫
G0(u)

(u − v±)
du + iπG0(v±), (32)

where v± = ω±/k, and P represents the principal part of the
integral, in the Cauchy sense. Inserting the latter in Eq. (29), we
can interpret the dispersion relation as the zero of the dielectric
function ε(ω,k), which can be split into its real and imaginary
parts, ε = εr + iεi . In practice, this amounts to allowing ω to
become complex, ω = ωr + iγ . Explicit relations for ωr and γ

are, in general, not available, but some analytical expressions
are possible in some limiting cases. In what follows, we assume
that the modes are weakly damped, |γ | � ωr , a condition that
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we shall verify a posteriori. In that case, we can determine the
frequency ωr and the damping rate γ by writing [23,30]

εr (ωr,k) = 0, γ = − εi(ωr,k)

(∂εr/∂ω)ωr

. (33)

For temperatures well below the condensation temperature, we
may neglect the thermal broadening in the velocity distribution.
This allows us to use the cold gas condition G0(u) = 2πn0δ(u)
to obtain

εr (ωr,k) = 1 − g′(k)k2

m

n0

ω2 − h̄2k4/4m2
= 0. (34)

Restricting our discussion to soft modes only, i.e., ω � csk, we
obtain

∂ εr

∂ω
� 2gω

g′(k)k2c2
s

. (35)

Moreover, retaining finite temperature effects in the damping
rate (33), we have

γ = gkc2
s

4h̄ωr

[
1 + Q

g

√
n0 − k2

2g
χ + 1

g
Ud (k)

]2

×[G0(v+) − G0(v−)]. (36)

Such a procedure is justified as the damping rate is expected
to be small (and in the case of δ-distributed systems it
vanishes identically). Furthermore, in thermal equilibrium,
we can assure the quantity G0(v+) − G0(v−) is negative (as
the distribution function decreases monotonically with respect
to the particles’ velocities) and the damping coefficient is
negative, γ < 0. However, in out-of-equilibrium conditions,
an inversion of population can eventually occur, such that
G0(v+) > G0(v−). In this case the excitations are kinetically
unstable. It is important to notice that the quantum fluctuations
(controlled by the parameter Q) and the finite-energy collisions
(controlled by χ ) do not change the sign of γ in Eq. (36), since
the damping rate only depends on the quantity g′(k)2.

A. Semiclassical limit

It is also useful to consider the semiclassical limit, valid for
|k| � |q| (long-wavelength limit). In this case, we can develop
the quantities G0(v±) around v = ω/k, and Eq. (36) becomes

γ � k3c4
s

4n0ωr

[
1 + Q

g

√
n0 − k2

2g
χ + 1

g
Ud (k)

]2(
∂G0

∂v

)
v=ω/k

.

(37)

For a condensate in equilibrium at a finite temperature T , the
derivative in Eq. (37) is always negative and the excitations
are damped. In order to be more specific, we need an explicit
expression for the reduced distribution G0(v). We shall use the
Bose-Einstein distribution

G0(v) = 2πn0{e[E(v)−μ]β − 1}−1, (38)

where E(v) = mv2/2 = h̄2q2/2m, β = 1/kBT , and the
chemical potential μ provides the zero of the energy scale.

�

�
��

FIG. 2. Unstable reduced distribution, G0(v), of a thermal dipolar
condensate in the presence of a stream of atoms, obtained from
Eq. (40) for nb = 0.2n0 and vb = 1.7c2D (solid line). For comparison,
a stable thermal distribution is depicted (dotted line). In both cases,
we have set T = 0.4μ/kB .

The Landau damping rate γ therefore reads

γ � −k3c4
s

4ωr

[
1 + Q

g

√
n0 − k2

2g
χ + 1

g
Ud (k)

]2

×βe[E(ω/k)−μ]β{e[E(ω/k)−μ]β − 1}−2. (39)

We can see that γ is always negative, for all possible values of
the phase velocity ω/k. However, as mentioned above, out-of-
equilibrium situations may make the condensate kinematically
unstable. This is linked with the possible existence of a
suprathermal atomic stream, with density nb and mean velocity
vb, as described by

G0(v) = 2πn0

e[E(v)−μ]β − 1
+ 2πnb

e{[E(v−vb)]−μ}βb − 1
, (40)

where βb = 1/kBTb, and Tb is the temperature of the suprather-
mal stream (see Fig. 2). In this case, the damping coefficient
γ will eventually change sign, leading to an unstable region,
|v| < ω/k � |vb|. This is the kinetic counterpart of the two-
stream instability discussed in Ref. [33].

B. Heisenberg’s uncertainty principle
and the effective temperature

It is worth noticing that, even at zero temperature, the Lan-
dau damping mechanism may take place. This is a consequence
of the Heisenberg uncertainty principle, which states that for a
BEC with typical size l⊥ the uncertainty in the atom velocity
will be �v � h̄/ml⊥. Therefore, a finite-size l⊥ is equivalent
to an effective temperature Teff of the order of �v2. In that case,
the zero-temperature distribution G0(v) is broadened and the
respective effective temperature is

Teff = 1

2kB

h̄2

ml2
⊥

. (41)

For a 164Dy BEC, with m ∼ 162 a.u., chemical potential μ ∼ 3
kHz, and l⊥ ∼ 10–100 μm, we obtain Teff ∼ 0.3–30 pK, much
less than the critical temperature Tc ∼ 30 nK [42]. This means
that Landau damping will mainly be provided by the thermal
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FIG. 3. Estimation of the quantum Landau damping due to the
Heisenberg uncertainty. Real (top) and imaginary (bottom) parts of
the dispersion relation in Eq. (28). Depicted are the mean-field case
Q = χ = 0 (dotted line); the LHY correction, Q = 0.3g/

√
n0 and

χ = 0 (dot-dashed line); and its combination with the finite range
of the atomic collisions, Q = 0.3g/

√
n0 and χ = 0.08g/l2

z (solid
line). The circles mark the position of the roton minimum in the
different situations. In all cases, we have set εdd = 8.2 and a small
effective temperature of Teff = 0.01mc2

2D/kB , which is much less than
the critical temperature for condensation Tc.

part of the condensed gas. However, in a situation where the
phase velocity ω/k of the elementary excitation is strongly
reduced in the vicinity of a roton minimum, Landau damping
could eventually be provided by the Heisenberg broadening.
This feature is illustrated in Fig. 3. As we can see, in the
mean-field case (see dotted lines), Landau damping occurs
below the roton minimum, while the inclusion of the quantum
LHY correction displaces the Landau damping towards the
roton minimum. With the inclusion of the finite range of
the atomic collisions, the roton minimum remains practically
undamped. This means that a balanced combination of the
system size and the strength of the LHY corrections can favor
Landau damping near the roton minimum, resulting in a purely
quantum-mechanical suppression of the roton mode that is
worthy to be investigated in future experiments.

V. TRAPPING AND DIFFUSION

As mentioned above, Landau damping results from an
energy exchange between the phonon excitations and the
particles in the condensate. Together with the linear analysis

presented in the above sections, a more complete discussion
shall include other possible kinetic effects associated with this
energy exchange. The first effect we consider in this paper is
known under the name of atomic trapping, which can take place
if we consider the finite amplitude of the collective excitations
in Eq. (28) [43,44]. Another is atom diffusion, when a large
spectrum of excitations is excited in the medium [30,43].
In this case, the exchange of energy between the particles
and the phonons induces diffusion in the atomic velocity
space, associated with the cumulative Landau damping over
the phonon spectrum, leading to second-order changes in the
particle distribution. These two aspects are briefly described
next. In this section, we will neglect quantum fluctuations and
finite-energy effects, and take Q = 0 and χ = 0, for simplicity.
However, in the discussion that follows, the latter do not impact
the physics of atom trapping and diffusion qualitatively.

Atom trapping occurs in the vicinity of wave-particle
resonance, i.e., when the atom speed vq = h̄q/m is equal to
the phase velocity of the collective excitation. It can be seen
that particles with momentum q satisfying the condition

Eres − gñk �
h̄2q2

2m
� Eres + gñk, (42)

where ñk is the phonon amplitude and Eres = mω2/2k2, can
be effectively trapped by the potential created by the collective
mode. In other words, the trapped particles are those with
momentum q in the interval q− � q � q+, where

q± � mω

h̄k

√
1 ± k2c2

s

ω2

2m2

h̄2

(
ñk

n0

)
. (43)

As we can see from Eq. (43), the potential well created
by the collective excitations is particularly high near the
roton minimum, for which the frequency softens. Near this
region, a series of trapped states arises, with energy levels
h̄ωB(1/2 + ν), not exceeding gñk , where ν is an integer. The
bounce frequency for the trapped atoms is given by

ωB = kcs

√
ñk

2n0

[
1 + 1

g
Ud (k)

]
. (44)

This trapping process is very similar to that occurring for free
electrons in quantum plasmas [45,46]. In particular, we can
define a similar trapping parameter, �trap = gñk/h̄ωB , which
gives the approximate number of trapped states for each mode
k. For �trap � 1, we are in the quasiclassical limit, and for
�trap < 1/2 trapping will be forbidden. Trapping introduces
nonlinear corrections to Landau damping, which can lead to
modulations of the mode amplitude at the harmonics of the
bounce frequency ωB . However, nonlinear Landau damping is
outside the scope of the present paper.

Finally, we consider the case of a broad spectrum of
phonons, as is the case of a turbulent BEC [47,48]. A quasi-
linear theory, based on the above wave-kinetic equation, can
then be established, which is formally identical to that derived
in Ref. [49] for a laser-cooled gas. Each phonon excitation
will be damped with the corresponding Landau damping rate,
but due to global energy transfer between the particles and the
turbulent field the equilibrium distribution W0(q) will change
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over a long time scale, as determined by the diffusion equation[
∂

∂t
+ vq · ∇ − ∂

∂q
· D · ∂

∂q

]
W0(q,t) = 0. (45)

Here,D is a diffusion tensor in the atomic velocity space, which
is given by

D = π

n2
0

∫ [
1 + 1

g
Ud (k)

]2

q ⊗ q |ñk|2 δ(ω − k · vq)
dk

(2π )3
.

(46)

This expression shows that particle diffusion (leading, e.g., to
the broadening of the velocity distribution) results from the
sum of the trapped states mentioned above over the different
Fourier components of the phonon spectrum. This particle-
wave interaction is worthy to be investigated in a separate
paper.

VI. CONCLUSIONS

In this paper, we have described the main properties of
quantum Landau damping in dipolar condensates. The qua-
siclassical limit was also discussed. Our model was based on a
generalized wave-kinetic equation, with a nonlocal potential,
where quantum fluctuations and the finite-energy corrections
were also included. We have shown that such a kinetic

description is particularly adequate to describe Landau damp-
ing and kinetic instabilities associated with deviations from
thermal equilibrium.

A general expression for the dispersion relation of elemen-
tary excitations in the dipolar BEC, and the corresponding
Landau damping rate, were established. Typical dipolar 3D
and quasi-2D configurations were also examined, which in-
cluded the formation of maxon-roton pairs and the eventual
occurrence of supersolids. According to our findings, Landau
damping is effective near the roton minimum, and is due to
a balance between the mode softening and the Heisenberg
uncertainty principle, leading to a purely quantum-mechanical
damping of the mode.

Additionally, we showed that the wave-kinetic formalism
can be an appealing tool to discuss kinetic instabilities and
nonlinear processes in the phase space. These latter effects
may be particularly relevant to investigate turbulence in low-
dimensional dipolar gases.
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