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Spatial separation of rotating binary Bose-Einstein condensates by tuning the dipolar interactions
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We are pointing out relevant anisotropic effects, related to spatial separation and miscibility, due to dipole-
dipole interactions in rotating binary dipolar Bose-Einstein condensates by considering symmetric (164Dy-162Dy)
and asymmetric (168Er-164Dy, 164Dy-87Rb) dipolar mixtures. The binary mixtures are kept in a strong pancake-
shaped trap, with repulsive two-body interactions and fixed rotation, modeled by an effective two-dimensional
coupled Gross-Pitaevskii equation. The anisotropy of the dipolar interactions on miscibility and vortex-lattice
structures is studied by tuning the dipole-dipole interaction (DDI) from repulsive to attractive by varying the
dipole polarization angle. A clear spatial separation is verified in the densities for attractive DDI, when the inter-
to intraspecies contact interaction ratio is larger than 1, being angular for symmetric mixtures and radial for
asymmetric ones. The signature of hidden vortices is evidenced in the particular dipolar-symmetric case. Another
relevant outcome is the observed mass-imbalance sensibility verified by the vortex-pattern binary distributions in
symmetric and asymmetric-dipolar mixtures, which requires the use of a relation for nonhomogeneous mixtures
to estimate the miscibility of two components.
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I. INTRODUCTION

The realization of Bose-Einstein condensates (BEC) with
chromium (52Cr) atoms has opened a new research direction
called dipolar quantum gases [1], allowing first experimental
studies on strong dipolar effects in quantum superfluid [2].
Following these investigations with chromium, many subse-
quent studies have been carried out by different experimen-
tal groups on fermionic and bosonic properties of strongly
dipolar ultracold gases, such as with dysprosium and erbium
[3–10]. As reported recently in Ref. [11], within the real-
ization of two-species mixtures with strongly dipolar atoms
of erbium and dysprosium, novel fascinating possibilities in
physics are being revealed due to the peculiar competition
between isotropic short-range contact interaction and long-
range anisotropic dipole-dipole interaction (DDI). The exper-
imental production of BEC with dysprosium (162Dy) has been
improved due to a new technique reported in Ref. [12] which
allows efficient loading from a magneto-optical trap; the abil-
ity to tune the strength of the DDI has been demonstrated in
Refs. [13,14] for rotating strongly dipolar single-atom species.
These highly magnetic lanthanide atoms, having strong DDIs,
can present quite relevant and interesting quantum behav-
iors, including ferrofluidity and self-bound droplets [2,15,16].
As demonstrated in Ref. [15], the quantum fluctuations in
strongly dipolar Bose gases can stabilize droplets against the
mean-field collapse. (On self-bound droplets in dipolar and
spinor bosonic systems, see Ref. [17] for an updated review.)
Related to vortices in rotating dipolar BEC contrasting with
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nondipolar systems, a review is presented in Ref. [18], where
the interplay of magnetism with vorticity is being explored.
Apart from experimental studies, there are previous investiga-
tions on the stability of trapped dipolar BECs in Ref. [19],
as well as several theoretical studies performed with dipo-
lar mean-field theory, which are based on the construction
of the corresponding pseudopotential [20,21]. The stability
properties of binary dipolar mixtures with two atomic species,
within a pancake-trapped symmetry, have been studied in
Ref. [22]. The ferrofluidlike pattern formations are studied
in Ref. [23] for two-component BECs with DDIs, and more
recently, in Ref. [24] considering instabilities and patterns
verified by oppositely polarized dipoles in a two-component
BEC. Rotational properties of two-component dipolar BEC
in concentrically coupled annular traps were also studied in
Ref. [25] by assuming only one dipolar component.

Following previous studies from Refs. [26,27], the
miscible-immiscible transition (MIT) of the binary dipolar
mixtures with 162,164Dy and 168Er have been recently inves-
tigated by some of us in Refs. [28–30]. For these coupled
dipolar systems, in Ref. [28] the miscible-immiscible stable
conditions within a full three-dimensional (3D) formalism
were established, considering repulsive contact interactions,
from pancake- to cigar-type trap configurations. The rotational
properties and vortex-lattice structures were further inves-
tigated in Ref. [29]. More recently, in Ref. [30], with the
binary system confined in squared optical lattices, the effect
of changing the inter- to intraspecies scattering length was in-
vestigated. Among the observed characteristics of these strong
dipolar binary systems, relevant for further investigations are
the possibilities to alter the effective time-averaged DDI from
repulsive to attractive by tuning the polarization angles of both
interacting dipoles.
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Motivated by the above previous studies, considering that
the interplay between DDIs and contact interactions can bring
us different interesting effects in the MIT, showing richer
vortex-lattice structures in rotating binary dipolar systems, in
the present work we investigate properties of strong dipolar
mixtures in a two-dimensional (2D) rotating magnetic trap by
tuning the polarization angles of the dipoles together with the
contact interspecies interactions. Within our aim, we explore
symmetric- and nonsymmetric-dipolar coupled mixtures in a
regime where the system is stable for positive and negative
DDIs. The nondipolar case is also verified at a critical polar-
ization angle. By assuming fixed the rotation frequency and
trap aspect ratio, the interactions can be controlled by two
independent ways: With Feshbach resonance techniques [31]
one can alter the two-body contact interactions (see Ref. [32],
for a detailed review on the applications of these techniques
to ultracold gases and mixed atomic species); and by external
magnetic fields one can tune the polarization angles of the
dipoles such that the DDI can be changed from repulsive to
attractive [33]. The stability of dipolar BEC affected by the
attractive part of the DDI can be kept by using a strong axially
confining pancake-shaped trap with suitable repulsive contact
interactions. Peculiar nontrivial behaviors are expected in the
density distributions, for dipolar-symmetric mixtures such
as 164Dy-162Dy, in comparison with the nonsymmetric ones
such as 168Er-164Dy and 164Dy-87Rb, due to their distinct
miscibility properties. Therefore, due to actual possibilities
for experimental investigations [7,11], we select these systems
as the main focus of our analysis.

Next we present the basic formalism and notation followed
by a section with our main results for the three kinds of dipolar
mixtures we consider. In a final section, we have a summary
with our main conclusions.

II. FORMALISM AND PARAMETRIZATION

The coupled dipolar system with condensed two atomic
species are assumed to be confined in strongly pancake-
shaped harmonic traps, with fixed aspect ratios, such that
λi = ωi,z/ωi,⊥ = 20 for both species i = 1, 2, where ωi,z and
ωi,⊥ are, respectively, the longitudinal and transverse trap
frequencies. The coupled Gross-Pitaevskii (GP) equation is
cast in a dimensionless format, with energy and length units
given, respectively, by h̄ω1,⊥ and l⊥ ≡ √

h̄/(m1ω1,⊥), where
ω1,⊥ ≡ ω1 is the transverse frequency, with m1 the mass,
for the species i = 1. Correspondingly, the space and time
variables are given in units of l⊥ and 1/ω1, respectively,
such that r → l⊥r and t → τ/ω1. Within these units and by
adjusting both trap frequencies such that m2ω

2
2,⊥ = m1ω

2
1,⊥,

the dimensionless external 3D trap potential for both species
can be written as

V3D(r) = 1
2 (x2 + y2 + λ2z2) ≡ V (x, y) + 1

2λ2z2. (1)

In the case of the DDI, we consider that one of the atoms
(Ai) is at position r with the other one (A j) at position r′,
respectively, with their line vector r − r′ making an angle θ

related to the z axis such that θ ≈ 90◦ for a strong pancake-
shaped trap, as given by Eq. (1) (each of the atoms can
be of species i, j = 1, 2). Next, we assume both dipoles are
polarized in the same direction, making an angle ϕ with
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FIG. 1. An illustration of the DDI between the two atomic
species 1 and 2, given in coordinate space, where the polarization
angle is ϕ, with the assumption that both atoms are in the (x, y) plane
(θ = 90o).

respect to the z axis. See the corresponding illustration in
Fig. 1. The tunability is performed by using time-dependent
magnetic fields with dipoles rapidly rotating around the z axis
[33,34]. The magnetic field is given by the combination of
a static part along the z direction and a fast rotating part
in the (x, y) plane, having a frequency such that the atoms
are not significantly moving during each period. Having once
performed a time averaging of the DDI within a period, the
corresponding 3D averaged interaction between the coupled
dipolar species i and j, with their respective magnetic dipole
moments μi and μ j given in terms of the Bohr magneton μB,
can be written in our dimensionless format as [33]〈
V (d )

3D (r − r′)
〉
i j = μ0μiμ j

h̄ω1l3
⊥

1 − 3 cos2 θ

|r − r′|3
(

3 cos2 ϕ − 1

2

)
, (2)

where μ0 is the free-space permeability. In the following, we
assume θ = 90◦, such that the DDI strength is repulsive for
ϕ < ϕM and attractive when ϕ > ϕM (where ϕM ≈ 54.7◦ is
the so-called “magic angle,” when the DDI is averaged to
zero). The factor within parenthesis in Eq. (2) results from the
time-averaging procedure on the dipole orientation around the
z axis. Large values for the aspect ratios λi allow us to reduce
the original 3D formalism to 2D by considering the usual
factorization of the 3D wave function in two components
given by ψi(x, y, τ )χi(z), where χi(z) ≡ (λi/π )1/4e−λiz2/2. In
this case, the ground-state energy for the harmonic trap in
the z direction is a constant factor to be added in the total
energy. It is safe to assume a common mass-independent
transversal wave function for both components with λi = λ,
as any mass asymmetry can be absorbed by changing the
corresponding aspect ratio. This approach for the reduction to
2D implies that we also need to alter the nonlinear parameters
accordingly, as the integration on the z direction will bring us
a λ dependence in the nonlinear parameters. So, the two-body
contact interactions related to the scattering lengths ai j , as
well as the dipole-dipole interaction parameters for the species
i, j = 1, 2, are defined as [29]

gi j ≡
√

2πλ
m1ai jNj

mi j l⊥
, di j = Nj

4π

μ0μiμ j

h̄ω1 l3
⊥

,

a(d )
ii ≡ 1

12π

mi

m1

μ0μ
2
i

h̄ω1l2
⊥

, a(d )
12 = a(d )

21 = 1

12π

μ0μ1μ2

h̄ω1l2
⊥

, (3)
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where Nj=1,2 is the number of atoms of species j and mi j =
mimj/(mi + mj ) is the reduced mass. For the dipolar param-
eters, we have valid the general relation d12d21 = d11d22. In
the next, the length unit will be adjusted to l⊥ = 1μm ≈
1.89 × 104a0, where a0 is the Bohr radius, such that ai j and
a(d )

i j can be conveniently given in terms of a0 in our numerical
analysis.

With the above notations for units and parameters, the
corresponding coupled GP equation in 2D is given by

i
∂ψi

∂τ
=

[−m1

2mi

(
∂2

∂x2
+ ∂2

∂y2

)
+V (x, y) − �Lz +

∑
j=1,2

gi j |ψ j |2

+
∑
j=1,2

di j

∫ ∞

−∞
dx′dy′V (d )(x − x′, y − y′)|ψ ′

j |2
]
ψi,

(4)

where V (d )(x, y) is the reduced 2D expression for the DDI,
and ψi ≡ ψi(x, y, τ ) and ψ ′

i ≡ ψi(x′, y′, τ ) are the com-
ponents of the total 2D wave function, normalized to 1,∫ ∞
−∞ dxdy|ψi|2 = 1.Lz is the angular momentum operator

with � the corresponding rotation parameter (in units of
ω1), which is common for the two components. The external
potential provided by the harmonic trap is given by V (x, y) =
1
2 (x2 + y2).

In 2D momentum space, the DDI can be expressed as
the combination of two terms, considering the orientations
of the dipoles ϕ and projection of the Fourier transformed of
V (d )(x, y) in momentum space. One term perpendicular with
the other parallel to the direction of the dipole inclinations,
respectively, is given by [26,27]

Ṽ (d )
⊥ (kx, ky) = 2 − 3

√
π

2λ
kρ exp

(
k2
ρ

2λ

)
erfc

(
kρ√
2λ

)
(5)

and

Ṽ (d )
‖ (kx, ky) = −1 + 3

k2
x

kρ

√
π

2λ
exp

(
k2
ρ

2λ

)
erfc

(
kρ√
2λ

)
, (6)

where k2
ρ ≡ k2

x + k2
y , with erfc(x) being the complementary

error function of x. The kx explicit in the right-hand side of
the above parallel term is the projected wave number in the
(x, y) plane in the direction of the polarization tilt, which was
arbitrarily assumed in the x axis when that term was derived
[26]. Generalizing the description to a polarization field rotat-
ing in the (x, y) plane, as kρ = (kx, ky) = (kρ cos θk, kρ sin θk )
and all directions θk are equally possible, we should average
k2
ρ cos2 θk in the plane such that k2

x should be replaced by
k2
ρ/2 in the parallel term shown in Eq. (6). By combining the

two terms according to the dipole orientations ϕ, the total 2D
momentum-space DDI can be written as

Ṽ (d )(kx, ky) = 3 cos2 ϕ − 1

2
Ṽ (d )

⊥ (kx, ky) ≡ Vϕ (kρ ). (7)

The 2D configuration-space effective DDI is obtained by
applying the convolution theorem in Eq. (4), performing the
inverse 2D Fourier transform for the product of the DDI
and density, such that

∫
dx′dy′V (d )(x − x′, y − y′)|ψ ′

j |2 =
F−1

2D [Ṽ (d )(kx, ky )̃n j (kx, ky)]. From Eqs. (5)–(7), one should

notice that such momentum-space Fourier transform of the
dipole-dipole potential is changing the sign at some particular
large momentum kρ . However, after applying the convolution
theorem with the inverse Fourier transform (by integrating the
momentum variables), the corresponding coordinate-space
interaction has a definite value, as in the 3D case, which
is positive for ϕ � ϕM and negative for 90◦ � ϕ > ϕM . For
larger angles, when the DDI is predominantly attractive, close
to ϕ ≈ 90◦, the system can become unstable, requiring enough
repulsive contact interactions and a suitable strong pancake-
shaped trap. In view of these requirements, in order to stabilize
the binary dipolar rotating system also in this extreme dipolar
condition, along this work we have assumed a quite strong
aspect ratio λ for the trap, combined with enough large contact
interactions. Therefore, to explore anisotropic dipolar effects,
by increasing the angle ϕ from zero to larger values we can
provide attractive interactions between dipoles, with the inter-
and intraspecies dipolar interactions being equally affected.

Parametrization. For the three various coupled dipolar
systems that we are investigating, the corresponding magnetic
dipole moments of the species are the following: μ = 10μB

for 162,164Dy, μ = 7μB for 168Er, and μ = 1μB for 87Rb. So,
by considering the definitions given in (3), the strengths of
the DDI are a(d )

i j = 131 a0 (i, j = 1, 2) for the symmetric-

dipolar mixture 164Dy-162Dy, and a(d )
11 = 66 a0, a(d )

22 = 131 a0

and a(d )
12 = a(d )

21 = 94 a0, for the 168Er-164Dy mixture. As the
magnetic moment of 87Rb is negligible in comparison with
the 164Dy, we assume the binary mixture 164Dy-87Rb as being
single-species dipolar, such that a(d )

22 = a(d )
12 ≈ 0. In all the

cases, we assume the number of atoms for both species are
identical and fixed at N1 = N2 = 104. For a symmetric-dipolar
mixture (μ1 = μ2) we have d12 = d11 = d22.

In the case of contact interactions, we should consider
enough large repulsive scattering lengths in view of our
stability requirements. However, the typical values of the
intraspecies contact interactions [such as as ≈ 92(8)a0 for
164Dy2 and as ≈ 200(23)a0 for 164Er2] may be too large, such
that they can suppress the dipolar effects. So, it being known
that these two-body interactions can be adjusted by applying
Feshbach resonance mechanisms [31,32], we found it appro-
priate to fix both intraspecies contact interactions at a11 =
a22 = 50a0, allowing the interspecies one to be explored
from smaller to larger values through the ratio parameter
δ ≡ a12/a11.

From previous studies related to vortex-pattern structures,
this parameter is associated to a first-order MIT for uniform
coupled condensed mixtures, which should be replaced by a
second-order one for nonuniform mixtures, as discussed in the
next section.

Having once selected the polarization angle and δ as the
appropriate parameters to alter the miscibility properties of
a mixture, we fix the other parameters guided by possible
realistic settings and stability requirements. For the rotation
frequency parameter, we choose � = 0.6, as we found that
� < 0.4 may not be appropriate to observe vortex-lattice
structures. For the harmonic trap potential, we assume a strong
pancake-shaped trap in the (x, y) plane, with an aspect ratio
λ = 20. Given the transversal trap frequency for the first
species as ω1 = 2π × 60 s−1, the trap frequencies for the
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second species can be found from our assumption on the
angular frequencies such that m2ω

2
2 � m1ω

2
1, implying that

the trap frequencies are about the same for both species in
the cases of 164Dy-162Dy and 168Er-164Dy binary mixtures,
whereas for the 164Dy-87Rb the trap frequency of the rubidium
is ω2 ≈ 2π × 82 s−1.

Numerical procedure. In order to solve the GP formalism
given by the coupled Eq. (4), the numerical approach applied
is based on the split-step Crank-Nicolson method [35,36],
combined with a standard method for evaluating DDI integrals
in the momentum space (see details in Ref. [29] and references
therein). In the search for stable solutions, the numerical
simulations were carried out in imaginary time on a grid with
a maximum of 528 points in both x − y directions, with spatial
and time steps �x = �y = 0.05 and �t = 0.0005, respec-
tively. Both wave-function components are renormalized to
one at each time step. By looking for stationary vortex states,
we solve Eq. (4) with different initial conditions. In view
of previous tests on the initial suitable conditions, we use a
combination of angular harmonics followed by convergence
tests of the solutions for the given inputs, within a procedure
also discussed in Ref. [29].

III. MISCIBILITY OF BINARY DIPOLAR MIXTURES

A relevant property that strongly affects the vortex pat-
terns of a coupled binary mixture is miscibility, which has
been shown to vary according to the inter- and intraspecies
interactions. As demonstrated in Ref. [37] for nondipolar
systems, the accepted condition for phase separation is based
on the consideration of minimizing the interaction energy
such that the relation between the two-body scattering lengths
(assumed to be positive) a12 >

√
a11a22 is satisfied when

the coupled system becomes immiscible, with the equality
establishing a first-order miscible-immiscible transition. In
terms of the contact parameters gi j defined in Eq. (3), a mass
factor should appear. However, the condition for nondipolar
MIT δ = a12/

√
a11a22 was derived for a homogeneous dipolar

mixture assuming m1 = m2 and N1 = N2 such that we can also
write it as δ = g12/

√
g11g22.

By considering homogeneous dipolar mixtures in a general
3D system, this condition was generalized in Ref. [28] by
replacing the contact parameters with the corresponding ones
that include the dipolar interaction strengths di j . In the present
case, with the definitions given in Eq. (3) and with the DDI
angular factor obtained in Eq. (7), f (ϕ) ≡ 4π (3 cos2 ϕ − 1),
the corresponding critical condition for MIT for homogeneous
dipolar mixture is verified at � = 0, with � defined by

� = |g11 + d11 f (ϕ)||g22 + d22 f (ϕ)|
|g21 + d21 f (ϕ)|2 − 1. (8)

By applying this condition, the system is miscible for � > 0
and immiscible for � < 0. Also related to the above condi-
tion, one should notice that in Ref. [28], instead of the polar-
ization angle ϕ, we have the angle between the wave vector k
and the dipole moment, which is assumed close to zero in our
study with a strong pancake-shaped system. We should notice
that for nondipolar systems (di j = 0), � > 0 corresponds to
δ < 1, and � < 0 to δ > 1. For symmetric-dipolar mixtures,
irrespective to the angle ϕ, the MIT point (� = 0) remains

in the same position as that obtained for nondipolar systems,
but it is modified for nonsymmetric-dipolar mixtures, having
a maximal effect when one of the species is nondipolar. For
pure dipolar coupled systems, under the above homogeneous
condition the miscibility is not affected, as d2

12 = d11d22 irre-
spective of being repulsive or attractive the DDI.

However, as also discussed in Ref. [38], besides the fact
that it is quite useful, a relation such as (8), due to its
simplicity, also carries serious limitations considering that it
was derived with the assumption that the coupled conden-
sates are uniform with the kinetic energy associated with
the boundaries being neglected. By the indications that the
kinetic energy should play a vital role in determining the
configuration of a two-component BEC, following Ref. [38],
a more general parameter was defined and studied in Ref. [28]
to estimate the miscibility of a coupled dipolar system, which
is given by

η ≡
∫ ∞

−∞
dxdy|ψ1||ψ2|. (9)

This definition replaces the first-order homogeneous condition
(8) by a second-order one, with a system being completely
miscible or immiscible for the case η = 1 or 0, respectively.
So, following Ref. [28], we can assume the system is almost
miscible if η � 0.75, and almost immiscible if η � 0.35.

Therefore, to alter the miscibility of a dipolar coupled
system, beyond the external mechanisms that can be applied
to adjust the contact two-body interactions (related to the
two-body s-wave scattering lengths) and polarization angle
of the dipoles, one should also consider intrinsic parameters
which can affect the associated kinetic energy, such as the
masses of the two species. In this regard, when considering
the two stronger dipolar binary cases that we are investigating,
we can verify from a previous study that the symmetric
164Dy−162Dy binary mixture is more miscible than the asym-
metric one, 168Er−164Dy, when we assume fixed repulsive
DDI (as for ϕ = 0) and with δ < 1 ( contact interactions
below the MIT point for homogeneous systems). These quite
distinct properties related to the miscibility of the two coupled
dipolar mixtures, verified in Ref. [28] and also observed in
our following results, cannot be justified by considering only
the dipole-moment differences, as the dipolar interactions,
when different for both species, can only affect the relation
by shifting the transition point.

In order to estimate how the kinetic-energy asymmetry
due to the mass imbalance can affect the miscibility, let us
consider the other parameters fixed. In this case, as shown by
Eq. (4), the mass imbalance appears explicitly in the kinetic-
energy terms (reflected in the second component of the cou-
pled system), with the mass-imbalance factor (m1/m2 − 1)
being 0.0244 for 168Er−164Dy and 0.0123 for 164Dy−162Dy.
This implies that the net effect in the kinetic energy due
to the mass imbalance in 168Er−164Dy is about twice that
obtained for 164Dy−162Dy. So the system with less mass
asymmetry is the more miscible one due to the corresponding
smaller asymmetry in the kinetic energy. Beyond this effect in
the kinetic energy, in our approach the mass imbalance will
also affect the nonlinear parametrization defined in Eq. (3),
considering the given physical values we are assuming for the
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quantities ai j and a(d )
i j . These effects due to the kinetic energy

are expected to be enhanced in particular when the application
of the Thomas-Fermi (TF) approximation is less valid, as
when the interactions become less repulsive or attractive. As it
will be shown, the mass-imbalance effect and corresponding
sensitivity can also be appreciated in rotating binary dipolar
mixtures by comparing the vortex-pattern results and the mis-
cibility of the two species in the case of the dipolar-symmetric
164Dy−162Dy mixture. By eliminating the mass asymmetry,
identical results for the vortex patterns will be obtained.

IV. RESULTS ON BINARY DIPOLAR MIXTURES

Our main results are presented in this section, for both
symmetric- and asymmetric-dipolar cases, with the DDI vary-
ing from repulsive to attractive, using the dipole polarization
angle, and with contact interaction ratio δ varying from 0.75
to 1.45. The other parameters, such as number of atoms for
each species, trap aspect ratio, intraspecies scattering lengths,
and rotation frequency, are fixed as discussed in Sec. II B.

We consider three different dipolar condensed mixtures,
which have different natural characteristics with respect to
their miscibility properties, when ϕ = 0 and the DDI is re-
pulsive, as well as different vortex-pattern structures when the
binary system is under rotation [28,29]. For the symmetric-
dipolar coupled system, 164Dy-162Dy, our results are orga-
nized and discussed in Sec. IV A. In Sec. IV B, we present
the results for the asymmetric-dipolar mixture, 168Er-164Dy.
Finally, for comparison with the previous two cases, in (C) we
also examine the 164Dy-87Rb case, where one of the species
has negligible dipole moment.

A. The symmetric-dipolar mixture, 164Dy-162Dy

We first consider the nearly symmetric mixture
164Dy-162Dy, within our aim to analyze anisotropic properties
of rotating dipolar interactions, by tuning the dipoles from
ϕ = 0◦ to 90◦ together with variations in the relative contact
interactions. In this case, both dipolar species have the same
magnetic dipole moments, polarized in the same direction.
Among the coupled systems we are considering, this one
is known to be more miscible than the other two cases, at
least when the DDI is repulsive, as for ϕ = 0◦. As verified
in Ref. [29], this dipolar mixture can show triangular,
squared, striped, and domain-wall vortex-lattice structures
regarding the ratio between inter- and intraspecies contact
interaction δ and rotation frequency �. The system undergoes
a miscible-to-immiscible crossover at δ = 1. In particular,
for repulsive DDI, as verified in Fig. 2, instead of creating
miscible vortices as occurs for δ � 1, by increasing the
interspecies interaction the two components tend to separate,
forming different patterns, from striped to domain-wall
structures.

Among the sets with different δ values, the more miscible
one is shown in Fig. 2(A) for δ = 0.75. In this case, squared-
lattice structures are shown in the densities at ϕ = 0. As ϕ

increases, the number of vortices gradually decreases. Some
distortions are observed near ϕ = 45◦, but the square-lattice
patterns are sustained up to ϕ ≈ 60◦, where we are already
entering in the attractive regime of the DDI [see panels

FIG. 2. The 2D densities |ψ j=1,2|2 are shown for the 164Dy-162Dy
dipolar mixture ( j = 1 is the 164Dy, with j = 2 the 162Dy), by tuning
the polarization angle ϕ from 0◦ [(a j)] to 90◦ [(e j)], with δ varying
from 0.75 [set (A)] to 1.45 [set (E)]. All panels have square formats,
with y labels being the same as the indicated x labels. The (x, y) and
|ψ j |2 are dimensionless, with l⊥ = 1 μm being the space unit. The
density levels vary from 0 (darker) to a limit ranging 0.009 ∼ 0.12
(lighter), fixed to 1 by their respective normalization.

(a j)–(c j) of Fig. 2(A)]. By further increasing ϕ, a single vortex
is verified at ϕ = 75◦, which disappears at ϕ = 90◦, when the
assumed rotation (� = 0.6) was verified not to be enough
to form visible vortices. So, the miscibility of the coupled
system becomes almost complete (η ≈ 1) at ϕ ∼ 90◦, with
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FIG. 3. 2D densities |ψ j=1,2|2 are shown in the upper two se-
quences of panels, for the 164Dy-162Dy mixture, as in Fig. 2(C)
(δ = 1.1), but considering the tuning-polarization angle from 67◦

[(a j)] to 75◦ [(e j)]. In the lower two sequences of panels, we have
the respective diagrams for the phases, changing from −π (darker)
to +π (lighter), with hidden vortices being confirmed. All panels
have square formats, with y labels being as the indicated x labels.
The (x, y) and |ψ j |2 are dimensionless, with space unit l⊥ = 1 μm.

the coupled system being dominated by the attractive dipolar
forces in a miscible regime of the inter- to intraspecies contact
interactions.

For δ = 1 (the condition for MIT in homogeneous system),
the effect of tuning the dipoles by increasing ϕ is similar to the
case with δ < 1 for repulsive DDI. For the attractive region of
DDI, with ϕ � 60◦, one can verify the appearance of double-
core vortices, being reduced to a single double core for each
species as ϕ moves near 90◦.

When already in the immiscible regime (δ > 1), by in-
creasing ϕ the dipolar interaction becomes less repulsive,
changing to attractive for ϕ > 54.7◦. In this situation, the sizes
of the coupled condensates are reduced, with the number of
vortices decreasing, leading to a complete spatial separation
of both components at some critical large angle ϕ ∼ 75◦, a
regime dominated by attractive dipolar and repulsive contact
interactions.

As the dipolar mixture is symmetric, the spatial separation
turns out to be angular and not radial. The almost complete
spatial separation in the attractive part of the dipolar interac-
tion is verified in sets (C), (D), and (E) of Fig. 2 (δ = 1.1, 1.25,
and 1.45, respectively) when the polarization angle ϕ � 75◦.
The domain-wall vortex patterns verified with δ = 1.25 and
1.45 when ϕ = 0 and 30◦ start changing as the interaction
becomes attractive, at ϕ = 60◦, until we have the almost
complete spatial separation at some critical angle ϕc.

Before that, at some intermediate angles ϕ < ϕc, it is
possible to observe rotating dropletlike states, as we can verify
particularly in panels (a j)–(c j) of Fig. 2(E). These kinds of
rotating dropletlike structures have already been observed in
Ref. [39] when considering particular values of δ and rotation
angles �. Due to the immiscibility, rotating droplet density
peaks are formed near the surface of the first component,

FIG. 4. Two-component ( j = 1, 2) densities for the binary mix-
ture 164Dy-162Dy as functions of x with y = 0, corresponding to
δ = 1.1 [2(C)], for the polarization angles ϕ = 0◦ (a), 30◦ (b),
60◦ (c), and 75◦ (d). In particular, panel (d) shows the mixture
reaching an almost complete spatial separation of the densities. All
quantities are dimensionless, with space unit l⊥ = 1 μm.

being located near the middle of the condensate for the second
component. In the structures of the rotating droplets’ vortex
lattice, we observe about vorticity 2 in the small-sized ones
and about 4 in the large-sized ones. They are similar as in
the case of double-core structures, with rotating droplets in
any one of the components being formed by multiple vortices
with the same circulation. For the rotation frequency we are
using, � = 0.6, we notice that the condition for producing
these rotating droplets is found to be for interactions given
by δ = 1.45 and ϕ = 30◦, as represented in the panels (b j)
of Fig. 2(E). By ϕ, as exemplified in panels (c j) of Fig. 2(E)
(when δ = 1.45), these rotating droplets are suppressed, with
the number of vortices being reduced due to the attractive
contributions in the DDI.

Half-space angular separation. In order to verify more
closely how the spatial separation occurs in this symmetric-
dipolar mixture, we consider δ = 1.1, with the polarization
angles varying close to some critical value where we can
define the existence of an almost complete spatial separation.
We can concentrate our discussion on the spatial separation
to this value of δ, considering that for larger values of this
parameter one can observe from Fig. 2 that the half-space
angular separation is quite similar. For that, we provide Figs. 3
and 4. In Fig. 3, we show a set of panels with the densities
and the corresponding phase diagrams for the vortex states by
considering ϕ varying from 67◦ to 75◦. With these panels, we
show how we define the critical angles. As we increase ϕ in
this interval, we observe that the initial two maxima verified
for ϕ = 67◦, for each component, reduce to just one maxima
when ϕ = ϕc = 75◦, as in the panels (d j) of Fig. 2(C). (For
ϕ = 74◦ we can still observe two maxima in the densities of
one of the components.) The densities for the coupled mixture
are further analyzed with the one-dimensional plots (y = 0)
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FIG. 5. Nonrotating (� = 0) condensate densities for the dipolar
mixture 164Dy-162Dy, considering δ = 1.1 and ϕ = 75◦, correspond-
ing to panels (d j) of Fig. 2(C). All quantities are dimensionless, with
space unit l⊥ = 1 μm.

shown in Fig. 4 for ϕ = 0◦, 30◦, 60◦, and 75◦, where the
almost complete spatial separation is observed at Fig. 3(d).

The immiscibility increases with the dominance of the
interspecies contact interactions (repulsive) relative to the
corresponding dipolar interactions (attractive). At the same
time, with the dipolar interactions being more attractive as
ϕ increases, with identical strengths, d11 = d22, the spatial
distribution of both condensates is reduced with the same
proportion. So, without rotation, the only relevant parameter
is the mass difference between the species, such that the
corresponding densities should be distributed radially, with
the more massive one at the center, as seen in Fig. 5. Under
rotation, the maxima for the densities are shifted symmet-
rically from the center, as seen in panel (d) of Fig. 4 for
δ = 1.1, determined by dipolar symmetry of the mixture and
the vorticity. We should observe that the effect of small
mass difference (shown to be relevant when δ = 1) is almost
suppressed in this rotating immiscible regime.

Role of hidden vortices. In order to modify the nonrotat-
ing distribution seen in Fig. 5 to that particular half-space
distribution, when the rotation frequency is switched on with
� = 0.6, one should expect the occurrence of vortices in
both coupled condensates, which should contribute to the
separability of the species. In fact, the existence of vortices
not visible in the density distribution are evidenced at the
low-density regions by the phase diagrams shown in Fig. 3
(lower two set of panels) for ϕ close to the almost complete
spatial separation. Such “hidden vortices” have been studied
in Ref. [40], where they are clarifying that they can be
revealed in the free expansion of the condensate.

Related to hidden vortices, we should also consider the
Feynman’s rule derived within a TF approximation for a single
condensate [41], predicting the total number of vortices (gen-
erated by a given rotation frequency) as given by Nv ≈ 2�〈x2〉
(considering our dimensionless units in a quasi-2D spherically
symmetric condensate). This is approximately verified in our
case for a complete repulsive system (ϕ = 0) by counting the
visible vortices for each component. As moving to attractive
DDI (higher polarization angles), fewer vortices are visible
than the predicted one. The “puzzling” absence of visible vor-
tices (expected from the use of Feynman’s rule) in a specific
case of rotating trapped condensate was previously reported
in the Fetter review [41]. The core size of a visible vortex

1.10 1.37 1.65

δ

70

71

72

73

74

75

ϕc

FIG. 6. Critical angle ϕc (in degrees) for the almost complete
spatial separation of the mixture 164Dy-162Dy, considering the rel-
evant interval region of δ that we are studying.

is about the healing length, which goes as the square root
of the inverse of the original local density (without vortices).
The hidden vortices are located at very small density regions
but have their core sizes determined by the barrier width not
by the healing length (as occurs for “ghost vortices” [42]).
Therefore, they can contribute to the angular momentum, with
Feynman’s rule being well satisfied only after summing these
vortices. This was discussed in Ref. [40] by using rotating
system with double-well potential, where they pointed out
that hidden vortices should also occur with other external
potentials in condensed systems. The validity of Feynman’s
rule was also confirmed in Refs. [43,44] only after includ-
ing the verified hidden vortices. In nonhomogeneous dipolar
BEC, the hidden vortices are also verified to contribute to the
separability of the condensate in Ref. [45] for 3D repulsive
dipolar interactions with different rotation frequencies.

For the almost complete spatial separation of the
164Dy-162Dy mixture, the corresponding critical angle ϕc is
estimated for several values of δ > 1, with the results shown
in Fig. 6. This angle decreases from 75◦ to 70◦ as δ varies,
respectively, from 1.1 to 1.65. By increasing δ in this interval,
the system becomes less miscible, with the spatial separation
being reached for smaller values of ϕ. Therefore, the kind of
angular spatial separation which emerges at smaller polariza-
tion angles (less attractive DDI) as δ increases appears when
the interspecies repulsive forces (contact interactions together
with hidden vortices) become the dominant ones.

In this dipolar-symmetric case, the miscibility should be
affected in the same way as in the case of nondipolar systems
when applying the homogeneous condition (8), considering
that all the inter- and intraspecies interaction terms are modi-
fied by the same dipolar factor, which provides more repulsion
or attraction to the system. By increasing δ we provide more
repulsion between the interspecies, implying that the system
becomes less miscible (decreasing η). This effect is clearly
shown by the five different curves presented in Fig. 7 when
we assume the polarization angle ϕ is fixed. In fact, as seen
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FIG. 7. The miscibility parameter (η), defined in Eq. (9), is given
as a function of the polarization angle ϕ (in degrees) for the five
cases of inter- to intraspecies contact interactions shown in Fig. 2. For
δ = 0.75, we have the green-solid line with circles; for δ = 1.0, the
blue-solid line with triangles; for δ = 1.1, the purple-solid line with
stars; for δ = 1.25, the red-solid line with squares; and for δ = 1.45
the dashed line.

in Fig. 7, the main miscibility behavior given by δ remains
when we vary ϕ from zero to 54.7◦, the point where the
DDI is reduced to zero. By further increasing ϕ, we have
the interspecies repulsive effect due to δ being diminished
as the attractive intraspecies DDIs increase, which helps the
system to become less immiscible. This behavior is clearly
seen in the case that δ < 1 (upper green line with bullets in
Fig. 7), when the attractive effect due to DDI is dominant in
comparison with repulsive effects due to interspecies contact
interactions. However, for δ > 1, the coupled system is shown
to become less miscible when the polarization angle is ϕ �
ϕc, besides the attraction provided by the DDI, which is still
effective as verified in Fig. 2 by the shrinking of the radius.
However, for the miscibility, the main roles are provided by
the interspecies interactions. As the system becomes less mis-
cible for ϕ � ϕc, we conclude that the repulsive interspecies
contact interactions are dominant in this region where the
DDI is attractive. The combination of both of the effects (one
due to repulsive contact interactions, reducing the miscibility;
the other due to attractive DDI, reducing the spatial size of
the condensates) results in the observed half-space spatial
separation of the mixture for ϕ � 75◦, where hidden vortices
have also been identified due to the rotation, as we have
discussed with Figs. 3 and 4.

Role of mass symmetry. This symmetric-dipolar case is ap-
propriate to verify a striking result due to the mass-symmetry
breaking, in rotating systems, represented by the set with
δ = 1 in Fig. 2(B). We should note that by considering the
hypothetical case that m2 = m1 in Eqs. (3) and (4), the coupled
two-component equation reduces to a single-component one,
implying that the results for the densities presented in the
upper and lower panels of Fig. 2(B) should be identical,
with the vortices due to the rotation occurring at the same

position. This is confirmed by our numerical solution for the
coupled system Eq. (4) with m1 = m2. Therefore, the results
shown in Fig. 2(B) (when δ = 1 and m1 �= m2) are basically
reflecting the mass asymmetry in the densities. We found quite
remarkable that such observed differences between the upper
and corresponding lower panels of Fig. 2(B) (in particular,
for the cases when ϕ > ϕM) correspond to such quite small
mass asymmetry, m1/m2 − 1 = 1/81, which appears explic-
itly in the second kinetic-energy term of the coupled Eq. (4).
However, this is consistent with our explanation presented in
the Sec. III for the miscibility, justifying the estimation of the
miscibility of nonhomogeneous binary mixtures by using η,
defined in Eq. (9).

Structure of the patterns. For the structure and boundary
domains of stripes presented in binary mixtures, one can
follow the analysis provided in Ref. [46], where an approx-
imate TF profile was used, considering that the only nonlinear
repulsive forces in a rotating coupled system are due to contact
interactions. This analysis was restricted to the symmetric
case with δ = 1, when all the masses and frequencies and
number of atoms are identical for both species, being quite
approximate for δ > 1. In our case, the corresponding behav-
ior can be followed from the results shown by (ai)–(ci) of
Fig. 2 for fixed repulsive DDI, when the TF approach can
still be approximately valid. As shown, the stripes become
larger by increasing δ, changing to serpentinelike and domain-
wall patterns. Correspondingly, one could try to transfer the
analysis performed in Ref. [46] to the cases where we modify
the DDI (varying ϕ for fixed δ). However, in this case an
apparent different behavior is verified. As shown in Fig. 2(C),
for example, the stripes become wider when the DDI becomes
more attractive. In order to explain that, we first should ob-
serve that the TF approximation is not applicable for attractive
interactions, such that it becomes less valid as we increase the
angle ϕ. Next, we notice that both interactions (contact and
dipolar) are not being varied in the same way. When we vary
the DDI by tuning the dipoles, all the inter- and intraspecies
are being changed in the same way such that the ratio be-
tween inter- and intraspecies dipolar interaction remains fixed,
whereas when changing δ only the interspecies interactions
are being modified. Therefore, the observed increasing in the
width of the stripes as the DDI turns out to be more attractive
is an effect due to the fact that the condensates are shrinking,
reducing the space of the overlap between the two species.
From one side, by increasing δ, the system becomes less
miscible, and from the other side, the coupled condensates
are shrinking by increasing the DDI. Together, the interplay
of these two effects will result in an almost complete spatial
separation between the densities, as observed in Fig. 2 for
ϕ � 75◦ with δ > 1. A critical angle ϕc can be defined in this
case as being given by the condition that the densities of both
species have well defining two maxima, one for each species.
This kind of separation that occurs in the immiscible phase
(η < 0.35) for symmetric-dipolar mixtures we call “angular
spatial separation.” As it will be shown, for the immiscible
phase of the asymmetric cases, the spatial separations will be
radial instead of angular.

Resuming our results for the 164Dy-162Dy binary mixture,
we have studied the anisotropic effects due to dipolar in-
teractions by tuning the orientation angle of dipoles from
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miscible to immiscible cases. The fundamental vortex-lattice
structures which occur for repulsive dipolar interactions (ϕ <

54.7◦) remain until the attractive dipolar interactions become
dominant with respect to the inter- to intraspecies contact
interactions.

B. The asymmetric-dipolar mixture, 168Er-164Dy

Here we discuss anisotropic effects of dipolar interactions
for the asymmetric 168Er-164Dy mixture by considering par-
ticular characteristics which distinguish asymmetric mixtures
from the symmetric ones. From previous analysis [29], we
understand that the vortex-lattice patterns for repulsive dipolar
DDI mainly feature triangular, squared, and circular vortex-
lattice structures in this binary mixture. This asymmetric-
dipolar mixture is less miscible than the symmetric-dipolar
case due to the imbalances of dipole moments and masses
of the two species. Even when δ < 1 it is less miscible and
we have dominant repulsive interspecies DDI with ϕ � ϕc.
The heavier mass 168Er component remains mainly distributed
in the center, surrounded by the lighter mass one, 164Dy. In
general, for repulsive DDI, this behavior remains similar for
δ > 1, as can be seen in Fig. 8. Such a result can first be
understood when considering the homogeneous condition (8),
because the dipolar asymmetry is modifying the point where
one should expect the MIT, from δ = 1 (dipolar-symmetric
case) to δ < 1 (dipolar-asymmetric case). This effect due to
the dipolar interactions becomes quite clear when we consider
a polarization angle close to the magic angle ϕc = 54.7◦,
where the system is nondipolar. For example, in Fig. 8 one
can see how the patterns vary as we increase δ for the case
where we have ϕ = 60◦, compared with other cases. So,
by increasing ϕ we are reducing the repulsive effect due
to interspecies contact interactions, with the transition point
being accordingly modified. However, in view of the mass
asymmetry it is more reliable to consider Eq. (9) to esti-
mate the miscibility of this rotating coupled dipolar system.
We should notice that the dipolar asymmetry together with
the mass differences of the two species are relevant to explain
the observed pattern distributions.

By tuning the polarization angle and increasing ϕ, the
DDI becomes attractive, providing the imbalanced dipolar
counterpart. For example, the 168Er has a lower magnetic
moment than the 164Dy, implying that 164Dy will have a larger
attractive dipolar interaction than the 168Er. This will affect the
corresponding radial sizes of the components in the mixture,
with 164Dy shrinking more than 168Er. The corresponding
density distributions, observed for the components in Fig. 8,
clearly indicate this general behavior in all the sets, with
different values for the contact interactions, by the exchange
positions between inner and outer components, as the dipole
interactions change from repulsive to attractive. For ϕ � 75◦
[panels (d j) of Fig. 8], we observed that the 164Dy component
is already surrounded by the 168Er one, implying a radial
spatial separation, which becomes more pronounced for δ �
1. This is expected from previous studies, as a binary mixture
becomes less miscible by increasing the repulsive interspecies
contact interactions [28,29].

With Fig. 9 we present our results for the behavior of
the miscibility of this asymmetric mixture, 168Er-164Dy, with
respect to the changes in the polarization angle for each of

FIG. 8. The 2D densities |ψ j=1,2|2 are shown for the 168Er-164Dy
dipolar mixture ( j = 1 is the 168Er, with j = 2 the 164Dy), by tuning
ϕ from 0 [(a j) panels] to 90◦ [(e j) panels], with δ varying from 0.75
[set (A)] to 1.45 [set (E)], as in Fig. 2. All panels have square formats,
with y labels being the same as the indicated x labels. All quantities
are dimensionless, with space unit l⊥. The density levels vary from
0 (darker) to a limit ranging 0.01 ∼ 0.105 (lighter), fixed by their
respective normalization to 1.

the sets of δ shown in Fig. 8. In this case, for all the sets
we observe a similar behavior of η with respect to ϕ, with
the coupled system becoming more miscible when increasing
ϕ until some critical angle where the miscibility reaches a
maximum. The behavior for the smaller angles differs from
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FIG. 9. Miscibility of the dipolar mixture 168Er-164Dy, defined
by η, as a function of the polarization angle ϕ (in degrees). For δ =
0.75, we have the green-solid line with circles; for δ = 1.0, the blue-
solid line with triangles; for δ = 1.1, the purple-solid line with stars;
for δ = 1.25, the red-solid line with squares; and for δ = 1.45, the
dashed line.

those verified in Fig. 7 (where η is not increasing in this
interval with ϕ < 54.7◦). The system 168Er-164Dy is less
miscible for ϕ = 0◦, with the miscibility increasing as the
DDI becomes less repulsive. For larger polarization angles,
we have the combined effect of attractive DDI (reducing the
radius and increasing η) together with the repulsive contact
interactions until a maximum at some critical ϕc, where there
is a balance between the two combined effects. For ϕ � ϕc,
the contact interactions start to become dominant in relation
to the DDI. As observed in Fig. 9, the critical angles are in a
small interval, being ∼70◦ for δ = 0.75, ∼60◦ for δ = 1, and
∼55◦ to ∼60 for δ = between 1.1 and 1.45. Next, for ϕ > ϕc,
as observed in Fig. 8, the system starts to become less miscible
with the emergence of a radial spatial separation, which differs
from the dipolar-symmetric case where the corresponding
separation is angular.

C. The asymmetric-dipolar mixture, 164Dy-87Rb

The binary mixture 164Dy-87Rb is more asymmetric with
respect to the dipolar magnetic moments of each component
that the other cases that we have considered, with the magnetic
moment of 87Rb being almost negligible, such that the effect
of the polarization angle is less effective, as due mostly to the
164Dy component. In this case, the rubidium component of the
mixture is more concentrated in the center when considering
the region where the DDI is more repulsive (as shown in
Fig. 10 for ϕ = 0 and 30◦), with the dysprosium component
distributed within a larger radius. The results are quite similar
for the three sets of δ that we are examining. When the
DDI changes to an attractive one, as verified for ϕ � 60◦,
we observe an interplay between the distributions of the two
components, with the radius of the 164Dy (component j = 1)
being strongly reduced in relation to the radial distribution

FIG. 10. The 2D densities |ψ j=1,2|2 for the 164Dy-87Rb dipolar
mixture ( j = 1 is the 164Dy, with j = 2 the 87Rb) by tuning the
polarization angle ϕ from 0◦ [(a j) panels] to 90◦ [(e j) panels] for
δ = 0.75 [set (A)], 1.0 [set (B)], and 1.25 [set (C)]. As in Figs. 2
and 8, all panels have square formats such that only x labels are
indicated, with corresponding sizes decreasing from left to right. All
quantities are dimensionless, with space unit l⊥ = 1 μm. The density
levels vary from 0 (darker) to a limit ranging 0.01 ∼ 0.08 (lighter),
fixed by their respective normalization to 1.

of the 87Rb ( j = 2). As in the previous discussed mixture, of
erbium and dysprosium, here also the effect is clearly due to
the large differences between the magnetic moments of both
species: the DDI is more attractive for the species with larger
intraspecies magnetic moment, implying a smaller radial dis-
tribution. In particular, we notice that this behavior with the
corresponding radial spatial separation is happening even for
δ < 1, when the DDI becomes attractive. This reflects the
dominance of the attractive intraspecies DDI in relation to the
repulsive effects due to the intraspecies contact interactions.
Also, the radial separation is similar to that obtained for the
168Er-164Dy mixture, when the DDI is attractive, with δ � 1.

One characteristic of this mixture can be observed when ϕ

is near 60◦, which is close to the polarization “magic angle”
ϕM = 54.7◦, where the DDI is zero. The results obtained
for panels (c j) are expected to correspond to the results
presented in panels (c j) of Fig. 8, if the mass differences
were the same. However, in the present case, the mass of the
second species, the rubidium, is about half of the dysprosium.
So the results shown a more clear separation between the
species, which can only be explained by the mass differ-
ences, together with the larger difference in the magnetic
moments.
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V. SUMMARY AND CONCLUSION

The polarization of the dipoles is found instrumental in
the process of tuning the dipolar interactions from repulsive
to attractive, by considering three different rotating coupled
mixtures. With the dipoles of the two species polarized in the
same direction, perpendicular to the direction of the dipole
alignment (ϕ = 0), the DDI is repulsive. By tuning the po-
larization angle ϕ from zero to 90◦ the DDI changes from
repulsive to fully attractive. The miscibility of the condensed
mixture is mainly affected by the interspecies interactions,
with the vortex-pattern structures being related to combined
effects due to inter- and intraspecies interactions. The vortex-
pattern formations obtained with ϕ = 0 (repulsive DDIs)
survive approximately up to some angle at which the DDIs
become attractive.

One of the main outcomes of the present study is
verified by the almost complete spatial separation in the
two-component densities under rotation, which occurs for
large polarization angles, when the DDI is attractive. We
have verified half-space angular separations of the densities
in the case of a dipolar-symmetric mixture, represented
by 164Dy-162Dy, whereas the separations have radial space
distribution for the dipolar-asymmetric cases, represented by
168Er-164Dy and 164Dy-87Rb. For δ > 1 (immiscible regime)
and large polarization angle (attractive DDI), we determine
the critical polarization angle where the symmetry is broken,
leading to the occurrence of an almost complete spatial sep-
aration of the mixture. As shown, the number of vortices and
miscibility of the binary mixtures are significantly affected
by the polarization angle, with the dipolar attraction being
relevant to reduce the spatial distribution of both condensates,
by merging vortices together. For the symmetric-dipolar
case, when the spatial separation is almost complete, as the
intraspecies dipolar interactions are identical, the positions
for the maxima of both densities are at the same distance
from the center, resulting in an angular half-space separation.
For the nonrotating regime, only the small mass asymmetry is
relevant for the observed radial positions of the condensates,
as verified. For the asymmetric-dipolar case, the almost
complete spatial separation is radial, which can be explained
by the intraspecies attractive interactions of both species such
that a species with larger magnetic moment will have a smaller
radius, being at the center. In the nonrotating regime, the mass
differences of the asymmetric-dipolar coupled species
considered are not enough to alter this kind of configuration.

Also related to the particular rotating symmetric-dipolar
case, as an unexpected outcome, we have verified the ap-
pearance of hidden vortices in the observed structure of the
spatial separation which occurs for attractive DDI. Further
investigations are suggested on the role of hidden vortices in
rotating coupled BEC systems, by varying the rotation and
nonlinear parameters.

Another quite relevant result is the observed effect of
the mass asymmetry in the miscibility and vortex-pattern
structures. The particular mass-imbalance sensitivity can first
be appreciated by considering the dipolar-symmetric mixture
164Dy-162Dy for δ = 1, when all the differences between
the density patterns of the two species should be attributed
to the mass asymmetry. Therefore, one should consider a
more general condition for the MIT than that derived for
homogeneous systems, such as the one given by Eq. (9),
where the asymmetries in the linear terms (kinetic energy or
external trap) can be taken into account by the densities. By
examining the corresponding case with δ = 1 for the dipolar-
asymmetric mixtures, one should also expect similar density
patterns for the two species if applying the homogeneous
condition for the MIT. However, the system is already less
miscible than the dipolar-symmetric case for δ < 1. In this
case, we have combined effects of the imbalanced masses and
dipolar interactions. For a given value of δ, as the DDI changes
from repulsive to attractive, the two species exchange their
position radially. Located in a small radius at the center we
have the species with a higher magnetic moment, for attractive
DDI. Otherwise, for repulsive DDI, the weaker dipolar species
will be at the center. The effect of mass differences in these
dipolar-asymmetric cases can be verified by the nonhomoge-
neous miscibility condition when comparing the results with
the dipolar-symmetric case.
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