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The properties of the localized states of a two-component Bose-Einstein condensate confined in a nonlinear
periodic potential �nonlinear optical lattice� are investigated. We discuss the existence of different types of
solitons and study their stability by means of analytical and numerical approaches. The symmetry properties of
the localized states with respect to nonlinear optical lattices are also investigated. We show that nonlinear
optical lattices allow the existence of bright soliton modes with equal symmetry in both components and bright
localized modes of mixed symmetry type, as well as dark-bright bound states and bright modes on periodic
backgrounds. In spite of the quasi-one-dimensional nature of the problem, the fundamental symmetric localized
modes undergo a delocalizing transition when the strength of the nonlinear optical lattice is varied. This
transition is associated with the existence of an unstable solution, which exhibits a shrinking �decaying�
behavior for slightly overcritical �undercritical� variations in the number of atoms.
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I. INTRODUCTION

Bose-Einstein condensates �BECs� in optical lattices have
recently attracted a great deal of attention due to the possi-
bility of investigating, both at the theoretical and at the ex-
perimental level, interesting physical phenomena such as
Bloch oscillations, Landau-Zener tunneling, Mott transitions,
etc. �1,2�.

The interplay between the nonlinearity �intrinsic in the
interatomic interaction� and the periodic structure �induced
by the optical lattice� leads to the formation of localized
states through the mechanism of the modulational instability
of the Bloch states at the edges of the Brillouin zone of the
underlying linear periodic system �3�. These states, also
known as gap solitons, can exist in the presence of both
attractive and repulsive interactions �4–6�, this last fact being
possible only due to the presence of an optical lattice �OL�.

The existence of gap solitons in repulsive BECs was ex-
perimentally demonstrated in Ref. �7�. The phenomena of
Bloch oscillations, generation of coherent atomic pulses
�atom laser� �8�, and the superfluid-Mott transition �9� were
also experimentally observed. The OLs considered in these
experiments act as external potentials �and therefore linearly�
on the condensate, introducing an intrinsic �state-
independent� periodicity in the system. In the following we
shall refer to a lattice of this type as a linear OL �LOL�. In
higher dimensions, LOLs were shown to be very effective in
stabilizing localized states against collapse or decay, leading
to the formation of stable multidimensional solitons �10,11�.

Besides LOLs, it is also possible to consider nonlinear
OLs �NOLs� with symmetry properties which depend on the
wave function characterizing the state of the system. A NOL
can be obtained by inducing a periodic spatial variation of
the two-body interatomic interaction strength �atomic scatter-
ing length�, leading to a periodic space modulation of the
nonlinear coefficient in the Gross-Pitaevskii equation �GPE�

governing the mean-field dynamics of the ground state. This
periodic modulation can be experimentally achieved either
by means of the standard Feshbach resonance method �12�,
taking an external magnetic field near the resonance which is
spatially periodic �13–17�, or by the optically induced Fesh-
bach resonance technique. In the latter case the nonlinear
periodic potential can be produced by two counterpropagat-
ing laser beams with parameters near the optically induced
Feshbach resonance �18,19�. A periodic variation of the laser
field intensity in space and a proper choice of the resonance
detuning lead to a spatial dependence of the scattering length
�20� and hence to a spatially dependent nonlinear coefficient
in the GPE.

Different interesting phenomena occurring in BECs in the
presence of a NOL have already been studied, such as the
transmission of wave packets through nonlinear barriers,
generation of atomic solitons, and existence of localized
states �18,19,21–23�. Mathematical properties of the ground
state and the existence of localized states of quasi-one-
dimensional �quasi-1D� BECs in NOLs have also been stud-
ied in �24,25�. All these studies �22,26,27� are concerned
mainly with scalar �single-component� 1D BECs in NOLs.
The possibility of stabilizing multidimensional scalar soli-
tons by means of NOLs is presently under investigation �pre-
liminary studies show that NOLs are unable to stabilize 2D
solitons if the average nonlinearity is negative�, while multi-
component BECs in NOLs have not been considered yet
either theoretically or experimentally. This last problem
arises when two or more BEC atomic species interact in the
presence of periodic spatial modulations of the scattering
lengths, which can occur between the species �interspecies�
and/or within the species �intraspecies�. The interaction be-
tween the two BEC components leads to an interspecies
NOL which can play a stabilizing role for localized states.
Spatial modulations of the intraspecies scattering length �giv-
ing rise to intraspecies NOLs� can also lead to the existence
of different types of soliton states.
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The aim of the present paper is to study the properties of
the localized states of two-component BEC mixtures in
NOLs. The case of a sinusoidal variation in the space of the
intra- and interspecies scattering lengths will be considered.
In particular we show the existence of different types of soli-
tons and study their stability by means of analytical and nu-
merical methods. The symmetry properties of the localized
modes with respect to the NOLs are also investigated. We
show that NOLs allow the existence of bright soliton modes
with equal symmetry in both components and bright local-
ized modes of mixed symmetry type, as well as bright-dark
bound states and bright modes on periodic backgrounds. We
also show that, in spite of the quasi-1D nature of the prob-
lem, the fundamental symmetric localized modes undergo a
delocalizing transition when the strength of the nonlinear
optical lattice is varied. This transition is associated with the
existence of an unstable solution which exhibits a shrinking
�decaying� behavior for slightly overcritical �undercritical�
variations in the number of atoms.

The phenomenon of the delocalizing transition was also
investigated in �28� for the case of multidimensional single-
component BEC solitons in LOLs and in �27� for the case of
one-dimensional BECs with combined linear and nonlinear
OLs. Delocalizing transitions in binary BEC mixtures have
not been previously investigated.

For the analysis of strongly localized modes �i.e., local-
ized in one or a few cells of the NOL� we will apply the
variational approach which was shown to be effective for
such types of problems, while for delocalizing transitions
and broad solitons we use a vectorial Gross-Pitaevskii equa-
tion averaged over rapid variations in space of the nonlinear
potential. Results are then compared with those obtained by
direct numerical simulations of the coupled GPE system. As
numerical tools to investigate the above problems we use
both self-consistent exact diagonalizations �29� and general-
ized relaxing methods �30�.

The paper is organized as follows. In Sec. II we describe
the physical model for the two-component BEC under action
of a NOL based on optical manipulation of the scattering
length by optically induced Feshbach resonances. The model
equations are introduced in the mean-field approximation in
terms of two coupled 1D Gross-Pitaevskii equations with
intra- and interspecies interaction terms. The problem of the
existence of soliton solutions �when the inter- and intraspe-
cies atomic scattering lengths are periodically modulated in
space� and the symmetry properties of localized modes and
their stability are discussed in Sec. III. The delocalizing tran-
sitions of fundamental modes and the existence of unstable
solutions associated with them are studied in Sec. IV. The
analytical predictions are confirmed by direct numerical
simulations of the full GP equation �Secs. II–IV�. Finally, in
Sec. V, the main results of the paper are summarized.

II. MODEL

Two-component condensates represent a mixture of atoms
in different hyperfine states �31–34�. We consider here the
dynamics of two-component BECs in the presence of a non-
linear optical lattice produced either by spatially varying

magnetic fields near a Feshbach resonance �FR� value or by
optically induced FRs �20�. According to the latter approach,
the scattering length as can be optically manipulated if the
incident light is close to the resonance with one of the bound
p levels of electronically excited molecules. Virtual radiative
transitions of a pair of interacting atoms to this level can
change the value and/or reverse the sign of the scattering
length. The periodic variation of the laser field intensity in
the standing wave, I�x�= I0 cos2�kx�, produces a periodic
variation of the atomic scattering length such that

as�x� = as0�1 + �
I

� + I
� , �1�

where as0 is the scattering length in the absence of light, � is
the frequency detuning of the light from the FR, and � is a
constant factor. For weak intensities, when I0� ���, we have
that as=as0+as1 cos2�kx�. Periodic variation of the scattering
length by a spatially varying external magnetic field B�x�
near a FR can be described by

as�x� = as0�1 +
�

B0 − B�x�	 , �2�

where B0 is the resonant value and � the corresponding
width. Examples are a multicomponent BEC of 23Na atoms
�34� or a mixture of 41K-87Rb atoms on the surface of a chip.
The periodic variation of B can be controlled by the current
in a magnetic wire on the chip surface �35�. For the mixture
41K-87Rb it was shown recently that the interspecies scatter-
ing length a12 can be tuned using the Feshbach resonances by
varying the external magnetic field in the interval 50–800 G
�31�.

The mean-field equations for the ground-state wave func-
tion of a quasi-1D two-component BEC under the action of a
NOL are given by the following coupled system �18,19�,
with components i=1,2:

i�
��i

� t̄
= −

�2

2m

�2�i

� x̄2 + Bi�x̄���i�2�i + S12�x̄���3−i�2�i, �3�

where m is the particle mass, with x̄ and t̄ the full-
dimensional space and time variables, respectively. In the
above, S12 is the parameter giving the strength of the inter-
species NOL and Bi�x̄� is directly related to the atomic scat-
tering length of the species i �Bi�x̄�=2as,i����. In the fol-
lowing we fix the spatial dependence of Bi�x̄� and S12�x̄� as

Bi 
 Bi�x̄� = �i0 + �i cos�2kx̄� ,

S12 
 S12�x̄� = G0 + G1 cos�2kx̄� , �4�

where k is the lattice parameter.
In order to introduce dimensionless variables, all quanti-

ties are first defined in terms of the lattice parameter k, where
��R
 �2k2

2m is the energy unit, such that

x 
 kx̄, t 
 �Rt̄, ui 
����10���20�
��R

�i. �5�

Next, by redefining the parameters in �4�,
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�i0 

�i0

���10���20�
, �i 


�i

���10���20�
,

g0 

G0

���10���20�
, g1 


G1

���10���20�
,

	i 
 	i�x� 

Bi

���10���20�
= �i0 + �i cos�2x� ,


12 
 
12�x� 

S12

���10���20�
= g0 + g1 cos�2x� , �6�

the pair of equations �3� can be written as

i
�

�t
�u1

u2
	 = −

�2

�x2�u1

u2
	 + � 	1�u1�2 
12u2

�u1


12u1
�u2 	2�u2�2

	�u1

u2
	 . �7�

The normalization of the total wave-function � is related to
the components ui and the number of atoms, Ni, by the equa-
tion

�
−�

�

�†� dx = �
−�

�

dx�u1
�u2

���u1

u2
	 = N1 + N2. �8�

We remark that in experiments the magnitude and sign of
both the inter- and intraspecies scattering lengths can be con-
trolled by external magnetic fields �12� or by counterpropa-
gating laser fields �31,36�.

Variational approach

In this section we perform an analytical study in
the framework of the variational approach �VA� for the
case of localized �soliton� solutions of the form ui�x , t�
=ui�x�exp�−iit�, where i are the chemical potentials. From
Eq. �7� we have

iui = −
�2ui

�x2 + ��i0 + �i cos�2x��ui
3 + �g0 + g1 cos�2x��u3−i

2 ui.

�9�

The total energy can be obtained from Eqs. �7� and �8�:

E =
��H���
����

=

�
−�

�

dx�u1 u2�H�u1

u2
	

N1 + N2
, �10�

where

H = �− �2

�x2 +
	1

2 �u1�2 
12

2 u2
�u1


12

2 u1
�u2 − �2

�x2 +
	2

2 �u2�2
	 , �11�

E = ��
−�

�

dx�
i=1

2 �� �ui

�x
�2

+
	i�x��ui�4

2
� + �

−�

�

dx 
12�x�

��u1�2�u2�2� 1

N1 + N2
. �12�

The corresponding Lagrangian is given by

L = �
i=1

2 � i�

2
�ui

��ui

�t
− ui

�ui
�

�t
	 − � �ui

�x
�2

−
	i�x��ui�4

2
� − 
12�x�

��u1�2�u2�2

= �
i=1

2 �i�ui�2 − � �ui

�x
�2

−
��i0 + �i cos�2x���ui�4

2
� − �g0

+ g1 cos�2x���u1�2�u2�2. �13�

In our variational approach we consider ui given by

ui =� Ni

��ai

exp�−
�x + �3/2 − i�x0�2

2ai
2 	 �i = 1,2� ,

�14�

where the normalization Ni is related to the number of atoms
of the species i, ai is the corresponding width, and x0 is a
parameter given the relative initial position of the two com-
ponents. By substituting this ansatz into Eq. �12� and into the
averaged Lagrangian L=�−�

� L dx, we obtain

E = ��
i
� Ni

2ai
2 +

Ni
2

��
�i� +

N1N2

��
G� 1

N1 + N2
, �15�

L = �
i
�iNi −

Ni

2ai
2 −

Ni
2

��
�i� −

N1N2

��
G , �16�

where

�i 
 �i�ai,x0� =
�i0 + �ie

−ai
2/2 cos�x0�

�8ai

, �17�

G 
 G�a1
2,a2

2,x0� =
1

�a1
2 + a2

2
e−x0

2/�a1
2+a2

2�

��g0 + g1e−a1
2a2

2/a1
2+a2

2
cos�x0

a2
2 − a1

2

a1
2 + a2

2	� . �18�

From the Euler-Lagrange equations �L /�N=0, �L /�a=0,
and �L /�x0=0 we obtain the equations for the chemical po-
tentials i and number of atoms, Ni:

i =
1

2ai
2 +

Ni

��
2�i +

Nj

��
G , �19�

Ni

��
= � P3−i − Qi

P1P2 − Q1Q2
� , �20�

with

Pi 
 ai
3��i

�ai
, Qi 
 ai

3�G

�ai
, �21�
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Qi = 2ai
4��x0

2 −
a1

2+a2
2

2 �
�a1

2 + a2
2�2 G +

�2x0 tan�x0
a2

2−a1
2

a1
2+a2

2� − aj
4�

�a1
2 + a2

2�5/2

�g1�e−x0
2+a1

2a2
2/a1

2+a2
2

cos�x0
a2

2 − a1
2

a1
2 + a2

2	�� , �22�

Pi 
 −
ai

�8
��i0 + �1 + ai

2��ie
−ai

2/2 cos�x0�� , �23�

sin�x0� =
�8N1N2��G/�x0�

N1
2�1�e−a1

2/2/a1� + N2
2�2�e−a2

2/2/a2�
, �24�

where i� j=1,2. From �19� and �15�, it also follows that

E =
1

2�N1 + N2��i

Ni�i +
1

2ai
2	 . �25�

For the particular choice of parameters for the symmetric
case, when �10=�20=�0 and �1=�2=�, we have i= j =,
ai=aj =a, Ni=Nj =N, and ui=1,2�x , t�
u��x , t�, with

u��x,t� =� N

a��
exp�−

�x � x0/2�2

2a2 	e−it. �26�

The equations for the chemical potential , energy E, and
number of atoms, N, become �x0�0�

 =
1

2a2 +
N

�2�a
��0 + � cos�x0�e−a2/2�

+
N

�2�a
��g0 + g1e−a2/2�e−x0

2/2a2
� , �27�

E =


2
+

1

4a2 , �28�

N
�2�a

=
1

�2a�P + Q�
�Q 
 Qi, P 
 Pi� , �29a�

N
�2�a

=
− 1

2 �a2��0 + � cos�x0�e−a2/2�1 + a2�� + �a2 − x0
2�

��g0 + g1e−a2/2�1 +
a4

a2 − x0
2	�e−x0

2/2a2�−1

, �29b�

sin�x0� =
�2 a

�
e�a2/2� �G

�x0

= −
x0

�a2��g0ea2/2 + g1�exp�−
x0

2

2a2	� . �30�

For x0=0, we have

 =
1

2a2 +
N

�2� a
��0 + g0 + �� + g1�e−a2/2� , �31�

N
�2�a

=
− 2

a2��0 + g0 + �� + g1�e−a2/2�1 + a2��
. �32�

By using �32� in �31� for the symmetric case with x0=0 we
obtain

 =
− 3

2a2� ��0 + g0� + �� + g1�e−a2/2�1 − a2

3 �
��0 + g0� + �� + g1�e−a2/2�1 + a2�

� . �33�

The stability of the soliton solution can be investigated by
using the Vakhitov-Kolokolov �VK� criterion �37� �in the
present case, implying that for a stable system we should
have dN /d�0� and also by studying the total energy E and
chemical potentials i as functions of the width a. For the
symmetric cases �when N1=N2=N and 1=2=�, the re-
sults of such study are presented in Figs. 1–4, considering an
attractive interspecies scattering length �g0�0� in Figs. 1
and 2 and repulsive interspecies scattering length �g0�0� in
Figs. 3 and 4. From Figs. 1 and 3 we obtain the behavior of
N, chemical potential , and energy E as functions of a. The
behavior of  versus N, in order to check the VK criterion, is
shown in Figs. 2 and 4. This stability study was done mainly
by using the VA, considering different values of the param-
eter x0, which gives the position of the soliton solution with

0 2 4 6 8 10a
0.0

0.4

0.8

1.2

1.6

2.0

N

x0=0
x0=π/2
x0=π

0 1 2 3 4
a

−3

−2

−1

0

µa
2

x0=0
x0=π/2
x0=π

0

−1

−2

−3

−4

−5

4a
2
E

FIG. 1. Considering the symmetric case with �10=�20=−1, �1

=�2=−0.5, g0=−1, and g1=−1.5, with different values of x0, we
show the VA results for the number of particles, N, chemical poten-
tial , and energy E versus the width a. N is given in the upper
panel, with a2 �scale in the left-hand side� and 4a2E �scale in the
right-hand side� given in the lower panel. All quantities are
dimensionless.
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respect to the optical lattice. In case of x0 the VA solutions
are also compared with full numerical results in Figs. 2 and 4
�solid lines with open circles�. As observed, the VA gives a
good qualitative picture of the exact results, with improved
quantitative results for large values of ��.

The dominant 1 /a2 behavior of the chemical potential 
and energy E, as functions of the width a, are removed in the
bottom panels of Figs. 1 and 3 �by a multiplicative factor
proportional to a2� in order to enhance their x0 dependence.
As we can verify, in both the cases, the most stable configu-
ration is obtained when x0=�.

As we can see in Fig. 2, the single soliton is stable for
�10=�20=−1, �1=�2=−0.5, g0=−1, and g1=−1.5. The VA
predicts the existence of a small instability region, which is
not confirmed by numerical simulations of the system of GP
equations. This instability region corresponds to the broad
soliton case with a /��1, where the VA approach is not
applicable.

III. SYMMETRY PROPERTIES OF LOCALIZED MODES

In this section we investigate the symmetry properties of
localized modes with a similar number of particles in each
component. These modes can be of equal symmetry or of
mixed symmetry type. In order to find these solutions we use
both the self-consistent exact diagonalization method and the

generalized relaxing method described in the Appendix
�these methods provide identical results for all the cases
studied below, with the only exception of the state in Fig. 8,
for which the relaxation method was not effective�.

In Fig. 5 we show the fundamental modes obtained in the
attractive case ��i0�0, g0�0� with an equal and different
number of atoms in the two components. In both cases we
have that the maximum of the atomic densities are symmet-
ric around the minimum of the corresponding effective po-
tentials �see the Appendix�. Adopting the same terminology
introduced in �38� for the case of a LOL, we shall refer to
these modes as OS-OS �on-site symmetric in both compo-
nents�. Note that OS-OS-modes with an equal number of
atoms have the same chemical potentials, while for a differ-
ent number of atoms the component with a lower number of
atoms has also a lower chemical potential. For sufficiently
strong NOLs �see below� these modes are very stable under
GPE time evolution and represent the fundamental ground
states of the system in the case of all attractive interactions.
In particular, the GPE time evolution of the density of the
OS-OS mode in Fig. 5 with a different number of atoms does
not show any deviation from the starting density for a time t
going from 0 to 200.

Besides on-site symmetry modes, it is also possible to
have modes that are intersite symmetric �IS� in one or in both

0.0 0.5 1.0 1.5 2.0 2.5
N

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

µ
x0=0
x0=0 (exact)
x0=π/2
x0=π

0 0.2 0.4 0.6 0.8
N

−0.4

−0.3

−0.2

−0.1

0.0

µ
x0=0
x0=0 (exact)
x0=π/2
x0=π

FIG. 2. VA solution for the chemical potential versus the num-
ber of particles, N, in the symmetric case with the same parameters
as in Fig. 1. Exact results are also shown for the case of x0=0 �solid
line with open circles, in both panels�. Here we observe that the
small unstable region d /dN�0 presented by the VA is not con-
firmed by the full numerical results. All quantities are
dimensionless.

0 2 4 6 8
a

0.0
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20.0

N

x0=0
x0=π/2
x0=π

0 1 2 3 4 5
a

−3

−2

−1

0

µa
2

x0=0
x0=π/2
x0=π

1

−1

−3

−5

0

−2

−4

4a
2
E

FIG. 3. Considering the symmetric case with �10=�20=−1, �1

=�2=−0.5, g0=1, and g1=−1.338926, with different values of x0,
we show the VA results for the number of particles, N, chemical
potential , and energy E versus the width a. N is given in the
upper panel, with a2 �scale in the left-hand side� and 4a2E �scale
in the right-hand side� given in the lower panel. All quantities are
dimensionless.
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components—i.e., symmetric around a maximum of the ef-
fective nonlinear potential instead of a minimum. Such
modes can be of type IS-IS �intersite symmetric in both com-
ponents�, such as the one shown in the top panel of Fig. 6, or
of mixed type �OS-IS or IS-OS�, such as the one shown in
the bottom panel of Fig. 6. In contrast with the OS-OS mode,
the intersite symmetric localized modes are found to be un-
stable under GPE time evolution as one can see from Figs. 7
and 8 for IS-IS and OS-IS modes, respectively. Notice that in
both cases the states decay into an OS-OS mode, which is
the true ground state of the system, and that in the IS-OS
case the decay of the IS component gives rise to internal
oscillations �relative motion between the two final OS com-
ponents�, which can last for a long time. Internal oscillations
of the OS-OS modes can also be excited trough scattering
with other modes.

Besides modes that are localized in both components, it is
also possible to couple a localized mode in one component
with an extended mode in the other component such that the
extended state acts as a periodic potential for the localized
mode, forming a bound state. Such an example is presented

in Figs. 8 and 9 for the case of a binary mixture with
an average repulsive interaction for the first component
��10�0, ��10�� ��1�� and an average attractive interaction for
the second component ��20�0, ��20�� ��2��. This combina-
tion of signs for the interactions causes the ground state of
the system to be extended for the first component and local-
ized in the second one, leading to the formation of the dark-
bright bound state depicted in the upper panel of Fig. 8.
Another possible solution for the same combination of pa-
rameters is also verified, as shown in the lower panel of Fig.
8, with the formation of a bright-bright state, having one
bright solution on top of the background. For the considered
parameters, both solutions presented in Fig. 8 are quite stable
under GPE time evolution. In Fig. 9 we show the time evo-
lution of the dark-bright state shown in the upper panel of
Fig. 8.
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FIG. 4. VA solution for the chemical potential versus the num-
ber of particles, N, in the symmetric case with the same parameters
as in Fig. 3. As we can see, the stable region �d /dN�0� is more
pronounced for x0=� than for x0=0. All quantities are
dimensionless.
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FIG. 5. On-site symmetric modes of Eq. �7� with NOL param-
eter values �10=�20=−1, �1=�2=−0.5, g0=−1, and g1=−1.5. The
top panel refers to the case of an equal number of atoms, N1=N2

=2, in the two components with equal chemical potentials 1=2

=−3.769. The bottom panel refers to the case of a different number
of atoms, N1=2 and N2=1.5, in the two components and different
chemical potentials 1=−2.698 and 2=−2.936. Dashed lines refer
to second components. All quantities are dimensionless.
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IV. DELOCALIZING TRANSITION OF FUNDAMENTAL
OS-OS MODES

In this section we investigate the existence of a delocal-
izing transition for the fundamental OS-OS symmetry mode.
In this regard we recall that for a single-component 1D BEC
with a combined LOL and NOL there exists a threshold in
the number of atoms below which the state becomes delocal-
ized. In the limit of rapidly varying NOLs one can show,
using the averaging method, that the system can be reduced
to a nonlinear Schrödinger �NLS� equation with cubic and
quintic nonlinearities for which the existence of a delocaliz-
ing transition is known. For binary BEC mixtures the same
method leads to a coupled system of cubic-quintic NLS
equations for which delocalizing transitions are also ex-
pected to exist. At the transition point the localized state
becomes spatially more extended and displays properties
similar to Townes solitons of the 1D quintic NLS system or

of the 2D NLS equation with cubic nonlinearity. For broad
soliton states—i.e., when the soliton width ls becomes much
larger than the periodicity scale lp—we can consider the ex-
pansion ui=Ui+�u1,i+�2u2,i+¯, with �� lp / ls�1. At the
leading order 1 /k2 we obtain

u1,i =
1

4
cos�2x���i�Ui�2 + g1�Uj�2�Ui. �34�

Substituting this into Eq. �7� and averaging over rapid oscil-
lations, we get for the slowly varying functions Ui the fol-
lowing coupled system with cubic-quintic interactions:

iUi,t + Ui,xx − �i0�Ui�2Ui − g0�Uj�2Ui +
3�1

2

8
�Ui�4Ui +

g1

4
�2�i

+ g1��Ui�2�Uj�2Ui +
g1

8
�2� j + g1��Uj�4Ui = 0. �35�

When �i0=−g0, we obtain a system of coupled quintic NLS
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FIG. 6. Localized modes of the two-component GPE in Eq. �7�
of symmetry type IS-IS �top panel� and IS-OS �bottom panel�. The
number of atoms and chemical potentials of the IS-IS mode are
N1=2, N2=1.5, 1=−0.653, and 2=−0.678, while for the IS-OS
mode they are N1=0.5, N2=1.7, 1=−0.427, and 2=−0.3849. The
parameters of the NOL for the IS-IS mode are fixed as �10=�20

=−1, �1=�2=0.5, g0=−1, and g1=1.5, while for the IS-OS mode
they are fixed as �10=�20=−1, �1=0.9, �2=−0.5, g0=−1.5, and
g1=1.5. Dashed lines refer to second components. All quantities are
dimensionless.
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and OS-IS modes �bottom panels� depicted in Fig. 6. Left panels
refer to first components. All quantities are dimensionless.
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equations. For the symmetric case U1=U2=U, the system
reduces to the quintic NLS equation

iUt + Uxx + ��U�4U = 0, �36�

with

� =
3

8
�1��1 + g1� +

g1

8
��1 + 3g1 + 2�2� . �37�

The Townes soliton solution of Eq. �36� is

U�,x� = eit�3

�
	1/4 1

cosh1/2�2�x�
, �38�

with the norm given by

Nc = �
−�

�

�U�2dx =
�

2
�3

�
. �39�

This solution behaves as a separatrix between collapsing and
decaying solutions of the quintic NLSE. Here dN /d=0 and
the VK criterion gives marginal stability. The total Hamil-
tonian is equal to zero in this solution, H�UT�=0. For ex-
ample, for parameters values g0=−1, g1=−1.3389, and �1
=�2=−0.5, we obtain the critical number Nc=2.41. A com-
parison with the numerical results in Fig. 10 shows that the
averaged NLS quintic equation overestimates the critical
number Nc by about 20% �notice that for the same param-
eters values we have Nc=2 in Fig. 10�. From this we con-
clude that the quintic NLS can be used only as a qualitative
model for the delocalizing transitions of two-component
BECs in NOLs. In the following we shall investigate the
Townes solitons and delocalizing transitions by resorting to
numerical methods. Delocalizing transitions in binary BEC
mixtures with NOLs and in coupled NLS equations with
cubic-quintic nonlinearities have not been previously inves-
tigated.

To show the existence of this phenomenon in a binary
BEC mixture in a NOL we vary in time the parameter g1
characterizing the intraspecies interaction while keeping
fixed the interspecies NOL to which the two components are
subjected. Starting from a given value of g1=g1,0, for which
a stable OS-OS mode exists, we adiabatically decrease g1 to
a value g1,0−�g1 and then increase it back to the original
value.

In the absence of delocalizing transitions the state will
restore to its original form for any decrement �g1, while in
the presence of a delocalizing transition a threshold value for
�g1 will appear above which the state becomes irreversibly
delocalized �it cannot be restored to its original form�. In Fig.
11 we show the time evolution of an OS-OS symmetric state
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FIG. 8. Dark-bright �upper panel� and bright-bright �lower
panel� soliton modes of Eq. �7�, obtained with the NOL parameters
�10=1, �20=−1, �1=�2=−0.5, g0=−1, and g1=−1.5. In both the
cases, we have the same chemical potentials 1=0.9476 and 2

=−2.746. The resulting number of atoms in the two components
are, respectively, N1=2 and N2=4.5 for the dark-bright solution
�upper panel� and N1=64.246 and N2=0.444 for the bright-bright
solution �lower panel�. All quantities are dimensionless.
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FIG. 9. Time evolution of the dark-bright soliton mode depicted
in Fig. 8. All quantities are dimensionless.
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with an equal number of atoms in the two components dur-
ing a variation of the interspecies interaction in time accord-
ing to the form

g1�t� = g1,0�1 − �g1 cos��
t − 1

2 �t1 + t2�
t2 − t1

�� . �40�

From the top panel of Fig. 11 it is clear that for a small
decrement �g1 the state is able to restore the initial wave
form, while for a larger decrement the state becomes fully
delocalized. In analogy to what has been done for the NLS
equation with periodic potential and quintic nonlinearity
�39�, one can characterize the delocalizing transition in terms
of the unstable states which separate localized modes from
extended ones. For the parameter used in Fig. 11, the critical

value in the strength of the NOL for the occurrence of a
delocalizing transition is found to be Nc=2. In Fig. 10 we
show the existence of an unstable stationary state found in
correspondence with this value, which has properties similar
to the Townes solitons of the quintic 1D NLS equation or
cubic multidimensional NLS equation. Note that this station-
ary state corresponds to the unstable branch presented in the
bottom panel of Fig. 4 �see the exact results for x0=0�.

From Fig. 12, it is indeed clear that for slight undercritical
variations of the norm �number of atoms� the state becomes
delocalized, while for slight overcritical variations of the
norm it shrinks to a fully localized mode, resembling the
behavior of Townes solitons. Notice that due to the equal
number of atoms N1=N2, the modes in the two components
have identical chemical potentials and identical profiles.

A delocalizing transition is also observed for OS-OS
states with a different number of atoms in the two compo-
nents. In this case the system shows a much richer behavior
due to the possibility to use the interspecies interaction to
stabilize localized states which in the absence of an interac-
tion would be extended over the whole system. An example
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FIG. 10. Top panel: unstable OS mode of Townes soliton type
�solid curve� of Eq. �7� at the critical strength of the interspecies
NOL g1=−1.3389 for a delocalizing transition to occur. The mode
has an equal critical number of atoms, N1=N2=Nc=2, with the
same chemical potential 1=2=−0.03498 and same profiles in
both components. The dashed line represents the corresponding ef-
fective potential V1

ef f =V2
ef f in Eqs. �A1� and �A2�. Other parameters

are fixed as �10=−1, �20=−1, �1=�2=−0.5, and g0=1. Bottom
panel: time evolution of the Townes soliton mode in the top panel
as obtained from Eq. �7�. All quantities are dimensionless.
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FIG. 11. Delocalizing transition of an OS-OS mode of a binary
BEC mixture with an equal number of atoms, N1=2 and N2=2. The
top panel shows the time evolution of the mode when the interspe-
cies parameter g1 is varied according to Eq. �40� with t1=50, t2

=150, and �g1=0.25. The bottom panel shows the same evolution,
but for the case �g1=0.34. Other parameters are fixed as �10=−1,
�20=−1, �1=�2=−0.5, g0=1, and g1,0=−1.5. The chemical poten-
tials of the initial states at t=0 are 1=2=−0.5401. All quantities
are dimensionless.
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of such interspecies-induced localization is given in Fig. 14
for an OS-OS symmetric state of Fig. 13 with an unbalanced
number of atoms �a large difference in the number of atoms
in the two components�. In particular, in the absence of in-
terspecies interactions, the first component has enough atoms
to be above the delocalizing threshold, while the second
component is taken to be below such a threshold, so that the
state delocalizes in the absence of an interaction. From Fig.
14 we see, indeed, that the presence of the interspecies inter-
action prevents the second component from delocalizing,
while in the absence of the interspecies interaction the first
component remains localized and the second one delocalizes
in quite a short time. Due to the many parameters of the
problem, a full investigation of the delocalizing transitions of
the fundamental OS-OS mode in binary BEC mixtures with
NOLs requires more extensive numerical investigations, a
task which is planned for a separated publication.

In closing this section we feel compelled to discuss how
the above phenomena can be observed in a real experiment.
The first step is to induce localized modes of the OS-OS type
in the system. This can be done by starting from the
Gaussian-like ground states of a two-species system trapped

in a parabolic potential in the absence of nonlinear optical
lattices. By removing the parabolic trap and switching on the
nonlinear optical lattices, the initial Gaussian state will adapt
to the fundamental OS-OS soliton mode if the excess matter
originating from the switching of the potentials is properly
taken away at the boundaries, using, for example, the tech-
nique suggested in Ref. �40� for the case of a single-
component BEC. From a numerical point of view, this cor-
responds to simulating the coupled GPE system with initial
Gaussian profiles using absorbing boundary conditions. We
remark that the technique of absorbing boundaries to gener-
ate localized states has been effectively used also to obtain
single-component matter-wave solitons of multidimensional
BECs �11�. Once the fundamental OS-OS soliton has been
created, the delocalizing transition can be investigated sim-
ply by varying the intensity of the interspecies interaction—
i.e., by varying the interspecies scattering length via the Fes-
hbach resonance—and by changing the external magnetic
field.

V. CONCLUSION

In this paper we have investigated the localized states in
two-component BECs with periodic modulation in space in-
traspecies and interspecies scattering lengths. The stability
regions are analyzed using the variational approach and the
Vakhitov-Kolokolov criterion. The symmetry properties
�with respect to the NOL� of the localized modes in each
component were considered and their stability properties in-
vestigated. We showed that localized modes of OS-OS type
are always stable and represent the fundamental ground
states of the system in the presence of attractive interactions.
Intersite symmetric modes and mixed symmetry modes also
exist, but they appear to be metastable under GPE time evo-
lution, decaying into modes of OS-OS type. The existence
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FIG. 12. Time evolution of the Townes soliton mode in Fig. 10
for an undercritical Nund= �.999�2Nc �top panel� and overcritical
Nov= �1.001�2Nc �bottom panel� number of atoms. Other parameters
are fixed as in Fig. 10. All quantities are dimensionless.
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FIG. 13. On-site symmetric mode of Eq. �7� with an unbalanced
number of atoms, N1=2 and N2=0.5 and for NOL parameters �10

=−1, �20=−1, �1=�2=−0.5, g0=−1, and g1=−1.5. The solid
�dashed� curve refers to the first �second� component. The chemical
potentials of the modes are 1=−1.013 and 2=−1.412. The
dashed line refers to the second component. All quantities are
dimensionless.
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regions in the parameter space of strongly localized modes
�localized on a few cells of the NOL� of fundamental type
were predicted by means of the variational ansatz and their
stability properties predicted by the Vakhitov-Kolokolov cri-
terion. Localized modes on top of periodic backgrounds and
of bright-dark solitons were also shown to exist in the case of
binary mixtures with opposite interactions in the two com-
ponents.

In spite of the quasi-1D nature of the problem we showed
that fundamental solitons undergo a delocalizing transition
when the strength of the intersite nonlinear optical lattice is
varied. This transition was associated with the existence of
an unstable localized solution which is extended on many
lattice cells of the NOL and which exhibits a shrinking �de-
caying� behavior for slightly overcritical �undercritical�
variations in the number of atoms.

This behavior was shown to exist for fundamental modes
with both an equal and unequal number of atoms in the two
components.

The existence of the delocalizing transition for the funda-
mental modes was inferred also from a reduced vector GPE

obtained by averaging the original GPE system with respect
to the rapid spatial oscillations introduced by the NOL. The
process of averaging the NOLs introduces high-order nonlin-
earities �cubic-quintic� which make the problem effectively
equivalent to a higher-dimensional vector GPE system for
which delocalizing transitions, in analogy with single-
component multidimensional cases, are usually expected.

The study of the delocalizing transition for fundamental
multicomponent solitons in terms of an averaged vector GPE
with higher-order nonlinearities, as well as the extension of
the above analysis to the multidimensional case, appears to
pose an interesting problem which deserves further investi-
gation.
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APPENDIX: NUMERICAL APPROACH

The numerical methods employed in this paper are de-
scribed in the following subsections.

1. Self-consistent diagonalization algorithm

We solve the nonlinear eigenvalue problem in �7� by treat-
ing the nonlinear part in a self consistent manner. This
amounts to considering the following linear eigenvalue prob-
lem:

1u1 = −
�2u1

�x2 + V1
ef fu1, �A1�

2u2 = −
�2u2

�x2 + V2
ef fu2, �A2�

with the effective potentials defined as Vi
ef f =�i�x��ui�2

+g�x��u3−i�2, i=1,2. To solve these eigenvalue problems we
adopt a discrete variable representation �41� and diagonalize

the operators Ĥi= K̂+ V̂i
ef f in a discrete coordinate space rep-

resentation �xn=na�, n=1, . . . ,Np, a=L /Np. Here K̂ denotes

the kinetic energy operator, K̂=− �2

�x2 , L is the length of the
system, and Np is the number of grid points. By taking as a
basis the set of vectors �xn�= �0, . . .0 ,1 ,0 , . . .0�, n
=1, . . . ,Np, and noting that Vi

ef f is already diagonal in this

basis while K̂ is diagonal in the momentum representation

kn�K̂�km�=kn
2�n,m, we have that the matrix elements of Ĥi can

written as
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xn�Ĥi�xm� = xn�F̂−1K̂F̂�xm� + Vi
ef f�na��n,m, �A3�

where F̂�xn� denotes the Fourier �unitary� transform of the
vector �xn�. Standard diagonalization routines are then used
to find eigenvalues �chemical potentials� and eigenfunctions.
The nonlinear eigenvalue is then solved in a self-consistent
manner starting from the trial wave functions u1 and u2, cal-
culating the effective potentials, solving the eigenvalue prob-
lems �A1� by diagonalizing the correspondig matrices �A3�,
selecting the given eigenstates as new trial functions, and
iterating the procedure until convergence is reached �see
Refs. �29,38� for applications to single-component and mul-
ticomponent BEC cases�.

2. Relaxation technique

The method of relaxation technique was used to check the
results obtained with the previous method to improve their
accuracy and also to make a complete study of the stability
of the solutions.

Stable states are obtained using a standard relaxation al-
gorithm in imaginary time propagation, fixing the normaliza-
tions given by the number of atoms of the two species, N1
and N2, and obtaining the chemical potentials 1 and 2. For
the hyperbolic �unstable� states we extended to a coupled
equation system the method developed in Ref. �30�, scheme
C, in which the idea of “back-renormalization” was used. In
this method, it is given the chemical potential to obtain the
number of atoms.

For a coupled system, scheme C of Ref. �30� can be gen-
eralized, evolving the following equations in imaginary time:

−
��

��
= �−

�2

�x2 + N1	1���2 + N2
12���2 − 1	� , �A4�

−
��

��
= �−

�2

�x2 + N2	2���2 + N1
12���2 − 2	� , �A5�

where we have normalized � and � to 1, such that �

u1 /�N1 and �
u2 /�N2. 	i and 
12 are given by Eq. �6�.

In the discretized version, the coupled equations �A4� and
�A5� take the form

�n+1/3 ← �n +
��

2
�1 − 	1N1

n��n�2 − 
12N2
n��n�2��n,

�n+2/3 ← OCN�n+1/3,

�n+1 ← �n+2/3 +
��

2
�1 − 	1N1

n��n�2 − 
12N2
n��n�2��n,

�n+1/3 ← �n +
��

2
�2 − 	2N2

n��n�2 − 
12N1
n��n�2��n,

�n+2/3 ← OCN�n+1/3,

�n+2/3 ← �n+2/3 +
��

2
�2 − 	2N2

n��n�2 − 
12N1
n��n�2��n,

N1
n+1 ←

N1
n

� dx��n+1�2
,

N2
n+1 ←

N2
n

� dx��n+1�2
,

�n+1 ←
�n+1

� dx��n+1�2
,

�n+1 ←
�n+1

� dx��n+1�2
,

where the superscripts �n, n+1, etc.� refer to time steps. OCN
is the Crank-Nicolson evolution operation corresponding to
−�2 /�x2. Note that in this coupled system the back-
renormalization �of N1

n+1 and N2
n+1� is done by exchanging

the corresponding wave functions �as N1 is associated with �
and N2 with ��. This procedure is required for stability, as
verified in numerical tests.

The excited states IS-OS and IS-IS depicted in Fig. 6 can
be obtained by relaxing Eqs. �A4� and �A5� for x�0 and
imposing the Von Neumann boundary conditions in the
origin—i.e., at x=0, �� /dx=0, and �� /�x=0. The present
relaxation algorithms are unable to find the state shown in
Fig. 8, which was obtained by the approach given above,
Eqs. �A1�–�A3�.

As compared to the scheme shown above, Eqs.
�A1�–�A3�, the advantage of relaxation methods relies on the
possibility of generalization to higher dimensions with few
computational resources.
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