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The theory of nonlinear diffraction of intensive light beams propagating through photorefractive media is
developed. Diffraction occurs on a reflecting wire embedded in the nonlinear medium at a relatively small
angle with respect to the direction of the beam propagation. It is shown that this process is analogous to the
generation of waves by a flow of a superfluid past an obstacle. The “equation of state” of such a superfluid is
determined by the nonlinear properties of the medium. On the basis of this hydrodynamic analogy, the notion
of the “Mach number” is introduced where the transverse component of the wave vector plays the role of the
fluid velocity. It is found that the Mach cone separates two regions of the diffraction pattern: inside the Mach
cone oblique dark solitons are generated and outside the Mach cone the region of “optical ship waves” �the
wave pattern formed by a two-dimensional packet of linear waves� is situated. Analytical theory of the “optical
ship waves” is developed and two-dimensional dark soliton solutions of the generalized two-dimensional
nonlinear Schrödinger equation describing the light beam propagation are found. Stability of dark solitons with
respect to their decay into vortices is studied and it is shown that they are stable for large enough values of the
Mach number.
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I. INTRODUCTION

An analogy between propagation of light beams in non-
linear media and superfluid flow is well known and quite
suggestive. Formally, it is based on a mathematical similarity
of the equations for electromagnetic field evolution in light
beams in paraxial approximation and the Gross-Pitaevskii
equations for superfluid motion of Bose-Einstein conden-
sates of dilute gases. Accordingly, such nonlinear structures
as bright or dark solitons and vortices have been thoroughly
studied both in optics and superfluid dynamics �see, e.g.,
�1,2��. These structures arise as results of interplay of non-
linear and dispersive properties of the medium under consid-
eration. One more example of such a structure is provided by
the so-called dispersive shocks which replace usual dissipa-
tive shocks of compressible fluid dynamics in the case when
dissipation can be neglected compared with dispersive ef-
fects. As a result, a thin layer with strong dissipation within
is replaced by an expanding region filled with fast nonlinear
oscillations, which can be represented as a modulated non-
linear periodic wave �a “soliton lattice”�. The notion of dis-
persive shocks arose first in water wave dynamics �the theory
of undular bores on rivers� �3� and plasma physics �collision-
less shock waves� �4�, then the generality of this phenom-
enon was realized and �based on the Whitham theory �5� of
modulations of nonlinear waves� mathematical methods for
their description have been developed �6–12�.

Realization of a Bose-Einstein condensate of dilute cold
gases �13–15� and study of its dynamics has naturally led to
the theoretical and experimental studies of dispersive shocks
in this new medium �16–20�. The corresponding optical
counterpart of dispersive shocks suggested by the above
mentioned analogy between beam optics and superfluid dy-
namics was realized experimentally in �21–24� and the
theory of such optical dispersive shocks was developed
in �25�.

In dissipative fluid dynamics with negligible dispersion
the shocks can also be generated by a supersonic flow of the
fluid past an obstacle. Such shocks have the form of a sharp
stationary jump of the fluid parameters across certain lines
inclined with respect to the flow direction. For shocks of
small intensity these lines lie along the so-called “Mach
cones” �see, e.g., �26��. In dispersive fluid dynamics these
oblique shocks unfold into “fans” of spatial solitons spread-
ing downstream from the obstacle �27�. The theory of such
oblique dispersive shocks was developed in �28� for the case
of weakly dispersive media when the flow past a slender
body is asymptotically described by the Korteweg–de Vries
equation along the Mach lines.

Dynamics of a Bose-Einstein condensate is described by
the Gross-Pitaevskii equation and the theory of oblique dis-
persive shocks was extended to this case in �29�. If the ob-
stacle is small enough, then the dispersive shock degenerates
into a single oblique dark soliton. The theory of oblique dark
solitons was developed in �30,31�. It is important to note that
such oblique solitons are located inside the Mach cone with
the Mach number defined as a ratio of the flow velocity to
the sound speed calculated at infinite wavelength. The linear
wave pattern formed by a stationary two-dimensional modu-
lated wave packet of Bogoliubov excitations and having the
same nature as the classical fluid dynamics Kelvin “ship-
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wave” phenomenon �see, e.g., �32�� is located outside the
Mach cone. Apparently, these Bogoliubov “ship waves” were
observed in the experiment �33� and their theory was devel-
oped in �34,35�. The analogy between beam optics and su-
perfluid dynamics suggests that similar effects would exist in
the optical context where they take the form of diffraction
wave patterns in light beams propagating through a nonlinear
medium. Although such structures were observed in some
experiments �see, e.g., �36��, they have not been studied sys-
tematically yet. In this paper, we shall consider a typical
simple situation of nonlinear diffraction of light which can
be considered as an optical counterpart of generation of spa-
tial dispersive shocks and ship waves in the flow of Bose-
Einstein condensate past an obstacle. To be definite, we con-
sider a light beam propagating through a bulk self-
defocusing nonlinear refractive medium with a thin wire �a
“needle”� inserted in it; see Fig. 1. Direction of the light
beam is tilted with respect to the wire; that is, there exists a
“flow of light past an obstacle.” As a result, at the output
plane of the medium a diffraction pattern is formed consist-
ing of oblique dark solitons and ship waves. We shall give
here analytical and numerical treatment of this phenomenon
and obtain main characteristics of the diffraction pattern.

II. MAIN EQUATIONS AND GENERAL FORM
OF THE DIFFRACTION PATTERN

Propagation of stationary light beams is described by the
equation

i
��

�z
+

1

2k0
��� +

k0

n0
�n����2�� + V�r�� = 0, �1�

where � is the envelope field strength of the electromagnetic
wave with the wave number k0=2�n0 /�, z is the coordinate

along the beam, x,y are transverse coordinates, r= �x ,y�,
��=�2 /�x2+�2 /�y2 is the transverse Laplacian, n0 is the lin-
ear refractive index, V�r� represents a “potential” of an ob-
stacle �e.g., a reflecting wire� at which diffraction occurs, and
in a photorefractive medium we have

�n = −
1

2
n0

3r33Ep
�

� + �d
, �2�

where Ep is the electric field applied to the crystal, r33 is the
electro-optical index, �= ���2, and �d is the saturation param-
eter.

For mathematical convenience, we introduce nondimen-
sional variables

z̃ =
1

2
k0n0

2r33Ep� �c

�d
�z, x̃ = k0n0	1

2
r33Ep� �c

�d
�x ,

ỹ = k0n0	1

2
r33Ep� �c

�d
�y, �̃ = 	�c� , �3�

where �c is a characteristic value of optical intensity �its
concrete definition depends on the problem under consider-
ation; for instance, it can be the background intensity�, so
that Eq. �1� takes the form of the generalized nonlinear
Schrödinger �GNLS� equation

i
��

�z
+

1

2
��� −

���2

1 + ����2
� + V�r�� = 0, �4�

where �=�c /�d, V�r� is represented in nondimensional units,
and tildes are omitted for convenience of the notation. In
fact, our approach can be applied to other forms of the non-
linear term provided it corresponds to self-defocusing light
beams. Therefore we shall also use the general form of the
equation,

i
��

�z
+

1

2
��� − f����2�� + V�r�� = 0, �5�

where f����2��0, In particular, for the photorefractive me-
dium,

f��� = �/�1 + ��� . �6�

If the saturation effect is negligibly small �����2	1�, then
Eq. �4� reduces to the standard cubic nonlinear Schrödinger
�NLS� equation

i
��

�z
+

1

2
��� − ���2� + V�r�� = 0. �7�

If the phase of � is a single-valued function, then it is con-
venient to represent the above NLS equations in a fluid dy-
namics type form by means of the substitution

��r,z� = 	� exp
i�r

u�r�,z� · dr�� , �8�

so that they are transformed into

�z + �� · ��u� = 0,

FIG. 1. A sketch of formation of nonlinear diffraction pattern in
propagation of a light beam through photorefractive medium with
embedded reflecting wire.
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uz + �u · ���u + ��f��� − �V�r� − ������

4�
−

�����2

8�2 � = 0.

�9�

In the hydrodynamic interpretation the light intensity � has a
meaning of a density of a “fluid” and Eq. �6� can be viewed
as an “equation of state” for such a fluid. The function u�r ,z�
is a local value of the wave vector component transverse to
the direction of the light beam; in hydrodynamic representa-
tion it has a meaning of the “flow velocity.” The variable z
plays the role of time so it is natural to describe the defor-
mations of the light beam in evolutionary terms. We note that
substitution �8� rules out vorticity so that system �9� actually
represents a restriction of the multidimensional GNLS Eq.
�5� to potential “flows.”

We shall consider propagation of a tilted light beam with
uniform input intensity, that is, at z=0 it has the initial form

��r,0� = exp�iUx� , �10�

that is, we suppose that the background intensity is equal to
unity; U represents the x component of the wave vector due
to tilting of the light beam. The problem is to describe the
wave pattern at the output value of z.

To clarify a general picture of the diffraction pattern �see
Fig. 2�, we have solved Eq. �4� numerically for the initial
wave function � given by Eq. �10� with U=2 and the bound-
ary condition of vanishing � at the surface r=1 of the ob-
stacle located at x=0, y=0. As we see, the diffraction pat-
tern consists of two different parts separated by the Mach �or
Cherenkov� cone which is defined by the lines drawn at
angle 
 with respect to the direction of the flow �x axis� with

sin 
 =
1

M
, M =

U

cs
, �11�

where the sound velocity corresponds to the dispersionless
limit of Eqs. �9�, that is ��p /��f����

cs = �	dp

d�
�

�0

= 	f���0��0 �12�

which in the photorefractive case with �0=1 yields

cs =
1

1 + �
and M = U�1 + �� . �13�

Outside the Mach cone there is a stationary wave pattern
created by interference of linear �far enough from the ob-
stacle� waves. Inside the Mach cone there are two oblique
dark solitons situated symmetrically with respect to the di-
rection of the flow. These oblique solitons decay at the end
points into vortices but closer to the obstacle they are de-
scribed by a potential flow with the jump of phase across
them as is demonstrated in Fig. 3.

Our task now is to develop analytical theory for these two
regions of the diffraction pattern and to compare it with nu-
merical simulations. We shall start with the ship-waves pat-
tern located outside the Mach cone.

III. DIFFRACTION PATTERN OUTSIDE THE MACH
CONE

If the size of the obstacle is much less than the wave-
length of the pattern, then we can consider it as a pointlike
one and take the obstacle potential in the form

V�r� = V0��r� . �14�

Far enough from the obstacle, the amplitude of the wave
pattern is small compared with the background intensity of

(a)

(b)

(c)

FIG. 2. Evolution of the diffraction pattern at the output plane as
a function of the length z of the photorefractive medium. The pat-
terns are obtained by numerical solution of Eq. �4� with V�r� cor-
responding to an ideally reflecting wire with unit radius for �=0.2,
U=2, and �a� z=20, �b� z=40, �c� z=60. Results of numerical simu-
lations here and below are presented in nondimensional units de-
fined in Eq. �3�.
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the light beam. Hence the wave pattern can be calculated by
means of perturbation theory �37�.

If we neglect the influence of the obstacle, then the �
function of a uniform light beam with the intensity
�0 depends on z in the reference frame with U=0 as �
�exp�−if��0�z�. We eliminate this dependence by introduc-
ing the substitution �=� · exp�−if��0�z� so that � satisfies
the equation

i�z +
1

2
�� + �f��0� − f����2��� = 0. �15�

In the same reference frame the obstacle moves with the
velocity −U and generates diffraction waves which in the
linear approximation are described by a small correction ��
to the unperturbed wave function: ��	�0+��. Hence ��
satisfies the equation

i��z +
1

2
��� − cs

2��� + ���� − V0
	�0��r + Uz� = 0,

�16�

where we have added the potential of the obstacle due to
which linear waves are generated. In the stationary case,
which we are interested in, the wave pattern moves with the
obstacle, that is, in the reference frame attached to the re-
flecting wire we have �=��r+Uz� and

�

�z
���r + Uz� = �U · �����r + Uz� .

Introducing r�=r+Uz and omitting primes, we arrive at the
equation

i�U · ���� +
1

2
��� − cs

2��� + ���� − V0
	�0��r� = 0,

�17�

describing stationary diffraction pattern generated by the
beam.

Equation �17� can be solved by the Fourier method. We
introduce the Fourier transform of the wave function:

�� =� ��keik·r d2k

�2��2 , ��� =� ��k
�e−ik·r d2k

�2��2

�18�

and obtain

− �k · U + k2/2 + cs
2���k − cs

2��−k
� = V0

	�0. �19�

Another equation is obtained by means of substitution k
→−k and complex conjugation:

− cs
2��k + �k · U − k2/2 − cs

2���−k
� = V0

	�0. �20�

Solution of Eqs. �19� and �20� reads

��k = V0
	�0

k2/2 − k · U

�k · U�2 − k2�cs
2 + k2/4�

. �21�

Since

�� = 	�0��� + ���� =� ���k + ��−k
� �eik·r d2k

�2��2

we arrive at the following expression for the intensity pertur-
bation in the output diffraction wave pattern created by
propagation of light past a reflecting wire:

�� = V0�0� k2eik·r

�k · U�2 − k2�cs
2 + k2/4� + i0

d2k

�2��2 , �22�

where we have introduced an infinitesimal positive imagi-
nary term +i0 corresponding to the radiation condition for
outgoing waves.

Now we introduce polar coordinates �see Fig. 4� defining
the components of the vectors r and k as

x = r cos , y = r sin ;

kx = − k cos �, ky = k sin � . �23�

Simple transformation casts Eq. �22� in the form

�� =
V0�0

�2 �
−�

� �
0

� ke−ikr cos�+��dkd�

k2 − k0
2 − i0

, �24�

where

FIG. 3. Distribution of the phase in the diffraction pattern at the
output plane of the photorefractive medium. The pattern corre-
sponds to �=0.2, U=2, and z=60.

χ η

µ
k

y

x

r

FIG. 4. Coordinates defining a radius vector r and a wave vector
k, normal to the wave front shown schematically by a curved line.
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k0 = 2cs
	M2 cos2� − 1 = csk̃��� . �25�

We can represent the integral �24� as a sum

�
−�/2

3�/2

d� = �
−�/2

�/2

d� + �
�/2

3�/2

d�

and, noticing that the second term after substitution ��=�
−� becomes equal to a complex conjugate of the first one,
we rewrite it as

�� =
V0�0

�2 Re�
−�/2

�/2 �
0

� ke−ikr cos�+��dkd�

k2 − k0
2 − i0

. �26�

To perform integration over k, we notice that the integrand
function has a pole in the first quadrant,

k = 	k0
2 + i0 = k0 + i0, �27�

which gives the main contribution into the integral for
cos�+���0. Indeed, taking a closed contour along the
positive real axis of k with added quarter of the circle, which
gives no contribution into the integral, and a path along posi-
tive imaginary axis which contribution

�
0

� ke−kr cos�+��dk

k2 + k0
2 �

1

r2 �28�

is decreasing with r much faster than the contribution of the
pole �which is proportional to r−1/2; see below�, we obtain

�� = −
2V0�0

�
Im �

−�/2

�/2

e−ikr cos�+��d� , �29�

where k is determined by Eq. �25� �index “0” is omitted
here�.

If the phase k ·r=r�, where

���� = k���cos� + �� �30�

is large enough, the integral �29� can be evaluated by the
standard method of stationary phase. This condition is ful-
filled far enough from the obstacle r→� provided
�k���cos�+����1 /r. The equation which determines the
point of the stationary phase �� /��=0 gives relationships
for the angles �see Fig. 4�

tan � =
2U2

k2 sin 2� =
2M2

k̃2
sin 2� ,

tan  =
�cs

2 + k2/2�tan �

U2 − �cs
2 + k2/2�

=
�1 + k̃2/2�tan �

M2 − �1 + k̃2/2�
. �31�

Taking into account Eq. �25�, we find

cos � =
k̃2

2��M2 − 2�k̃2 + 4�M2 − 1��1/2
. �32�

With account of Eq. �31�, we get the expression for the sec-
ond derivative of the phase,

�2�

��2 = 8
cos �

k̃3
��M2 − 2�k̃2 + 6�M2 − 1�� . �33�

As a result, the expression for the condensate density �29�
assumes the form

�� = V0�0	2k̃

�r

��M2 − 2�k̃2 + 4�M2 − 1��1/4

��M2 − 2�k̃2 + 6�M2 − 1��1/2

�cos�csk̃r cos � −
�

4
� , �34�

where

k̃ = 2	M2 cos2 � − 1. �35�

As we see from Eq. �34�, the linear waves exist only in the
region

− arccos�1/M� � � � arccos�1/M� �36�

outside the Mach cone.
With the help of Eqs. �31� one can find the shape of the

lines of constant phase �e.g., wave crests� �=kr cos � in a
parametric form,

x = r cos  =
4�

csk̃
3
cos ��1 − M2 cos 2�� ,

y = r sin  =
4�

csk̃
3
sin ��2M2 cos2 � − 1� . �37�

Small values of � correspond to waves in front of the ob-
stacle. In this case we have

x � −
�

2cs
	M2 − 1

+
�2M2 − 1��

4cs�M2 − 1�3/2�2,

y �
�2M2 − 1��

2cs�M2 − 1�3/2� , �38�

that is, the lines of stationary phase take parabolic form

x�y� � −
�

2cs
	M2 − 1

+
cs�M2 − 1�3/2

�2M2 − 1��
y2. �39�

The limiting values �= �arccos�1 /M� correspond to the
lines

x

y
= � 	M2 − 1, �40�

i.e., far from the obstacle the lines approach to the straight
lines parallel to those forming the Mach cone �11�. Predic-
tions of the analytical theory are compared with the numeri-
cally calculated wave pattern in Fig. 5 and excellent agree-
ment is found.

In the region in front of the obstacle where y=0,x�0, the
perturbations of the light intensity take the simplest form.
Here we have
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k = 2cs
	M2 − 1, �41�

i.e., the wavelength �=2� /k is constant and

�� = 2V0�0	 �M2 − 1�1/2

��2M2 + 1��x�
cos�− 2cs

	M2 − 1x −
�

4
� ,

y = 0, x � 0. �42�

The plot illustrating this dependence is shown in Fig. 6. As
we see, approximate formula Eq. �34� is accurate enough
almost everywhere except the small vicinity of the obstacle.

As was indicated above, the method of stationary phase
used for the derivation of Eq. �34� requires the condition
�k���cos�+����1 /r. According to Eq. �25� we have k→0
at the Mach cone and the necessary condition is not fulfilled.
To find a wave pattern near the Mach cone one should return
to the investigation of the integral �22� and introduce new
coordinates along the Mach cone ��� and normal to it ���
�i.e., they are rotated to the angle 
 around the origin�:

x = � cos 
 − � sin 
, y = � sin 
 + � cos 
 . �43�

In new coordinates Eq. �22� takes the form

�� = V0�0� � k2ei�k��+k���

�k�U cos 
 − k�U sin 
�2 − k2�cs
2 + k2/4� + i0

�
dk�dk�

�2��2 . �44�

Far from the obstacle, near the Mach cone, the dependence
of the wave pattern on the � coordinate is much slower than
the dependence on the � coordinate; besides that, one has
�k�	1 here. The main contribution into the integral over k� is
due to the pole whose position is determined by the equa-
tions

�k�U cos 
 − k�U sin 
�2 − k2�cs
2 + k2/4� = 0, k�

2 + k�
2 = k2.

�45�

Their approximate solution for k�	k�	1 is given by

k� = −
k�

3�1 + ��2

8	M2 − 1
, �46�

where we have taken into account Eq. �13�. Integration over
k� yields

�� =
V0�0�1 + ��2

2	M2 − 1

�

��
 1

�
�

0

�

cos� k�
3��1 + ��2

8	M2 − 1
− k���dk�� ,

�47�

and with account of the integral representation of the Airy
function

Ai�z� =
1

�
�

0

�

cos�1

3
�3 + z��d� �48�

we obtain the following expression for the density oscilla-
tions in the vicinity of the Mach cone:

�� = −
2V0�0

�M2 − 1�1/6�1 + �

3�
�2/3

Ai��−
2�M2 − 1�1/6

�3�1 + ��2��1/3�� ,

�49�

where Ai� denotes the first derivative of the Airy function
with respect to its argument. Returning to x and y coordi-
nates, we get

FIG. 5. Numerically calculated wave pattern corresponding to
diffraction of a light beam on the obstacle embedded into a photo-
refractive medium. The plot corresponds to �=0.2, U=2, and the
radius of the reflecting wire to r=1. Dashed line corresponds to
linear analytical theory, Eq. �37�, for the line of constant phase; it is
shifted to the left to two units of length from the center of the
obstacle due to its finite size in numerical simulations and better
fitting to numerics.

−60 −50 −40 −30 −20 −10 0
x

0

0.5

1

1.5

2

2.5

ρ

FIG. 6. Profile of intensity in front of the obstacle for x�0, y
=0, and choice of the parameters �=0.2, U=2, V0=2.6. Solid line
corresponds to Eq. �42� and dashed line to numerical solution of
Eqs. �5� and �6�.
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�� = −
2V0�0

�M2 − 1�1/6� 1 + �

3�x cos 
 + y sin 
��
2/3

�Ai��−
2�M2 − 1�1/6�− x sin 
 + y cos 
�
�3�1 + ��2�x cos 
 + y sin 
��1/3 � , �50�

where sin 
=1 /M, cos 
=	M2−1 /M.
The above formulas enable one to derive expressions for

the dependence of intensity on the y coordinate for fixed
value of x which may be convenient for comparison with the
experiment and numerical simulations. Far enough from the
Mach cone when Eq. �34� can be applied we find dependence
of  on y from the equation

y

x
= tan  =

�1 + k̃2/2�tan �

M2 − �1 + k̃2/2�
, �51�

then

r��� =
y

sin ���
, �52�

where k̃��� and ���� are defined by Eqs. �35� and �32�. In
the limit y�x we have →� /2, hence the denominator in
the right-hand side of Eq. �51� vanishes and

k̃ � 	2�M2 − 1� for y � x . �53�

Comparison with Eq. �35� gives the limiting value of �,

cos � �
	M2 + 1

	2M
. �54�

Substitution of these values of the parameters into Eq. �34�
yields

���y� � − V0�0	 2M

��M2 − 1�y

�cos��M − 1/M�y − �/4� for y � x . �55�

The profile of the wave in the vicinity of the Mach cone is
shown in Fig. 7. As we see, Eq. �34� reproduces the density
profile very well almost everywhere except for a closest vi-
cinity of the Mach cone and inside it where the density per-

turbation decays exponentially according to the behavior of
the Airy function in Eq. �50�.

IV. OBLIQUE DARK SOLITON

Far enough from the obstacle where vorticity is equal to
zero and the light “flow” can be considered as potential, we
can use the hydrodynamic representation of equations of
light beam evolution. Here the potential of the obstacle can
be neglected �in the case of a reflecting wire it obviously
vanishes outside the surface of the wire, that is, the obstacle
is represented by an infinite cylindrical barrier� and for large
enough z the soliton is close to its stationary state. The pro-
files of intensity � and “velocities” u,v can be found analyti-
cally as a solution of stationary equations

��u�x + ��v�y = 0, �56�

and

uux + vuy + � �

1 + ��
�

x

+ ��x
2 + �y

2

8�2 −
�xx + �yy

4�
�

x

= 0,

uvx + vvy + � �

1 + ��
�

y

+ ��x
2 + �y

2

8�2 −
�xx + �yy

4�
�

y

= 0,

�57�

with boundary conditions �in this section we assume �0=1�

� = 1, u = U, v = 0 at �x� → � . �58�

To simplify calculations, it is convenient to notice that one of
Eqs. �57� can be replaced by the condition of zero vorticity

uy − vx = 0 �59�

which is fulfilled for the potential flow in the soliton solu-
tion.

We look for the solution in the form

� = ��
�, u = u�
�, v = v�
�, where 
 = x − ay .

�60�

The parameter a determines a slope of the oblique soliton in
the x,y plane. Then Eqs. �56� and �59� with account of con-
ditions �58� give after simple calculation the expressions for
the components of the “flow velocity” in terms of the light
intensity

u =
U�1 + a2��
�1 + a2��

, v = −
aU�1 − ��
�1 + a2��

. �61�

Substitution of these expressions into any Eq. �57� and inte-
gration of the resulting equation yields

1

8
�1 + a2�2���2 − 2���� + �1 + a2�

�3

1 + ��

− �U2

2
+

1 + a2

1 + �
��2 +

U2

2
= 0, �62�

where an integration constant is chosen in accordance with
the conditions �58�. This equation can be integrated once
more to give

40 50 60 70 80 90 100

- 0.03

- 0.02

- 0.01

0.01

0.02

0.03

δρ

y

FIG. 7. Wave pattern near the Mach cone. Solid line corre-
sponds to Eq. �34� and dashed line to Eq. �50�.
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�1 + a2�2

8
�d�

d

�2

= −
�1 + a2��

�2 ln�1 + ��� + � 1 + a2

�1 + ���

−
U2

2
��2 + �U2 +

1 + a2

�2 ln�1 + ��

−
1 + a2

��1 + ���� −
U2

2
, �63�

where Eq. �58� is also taken into account. For a given Mach
number M = �1+��U the soliton solution depends on the
slope parameter a alone.

Now we notice that expressions for the flow velocity field
�61� in terms of intensity � do not depend on the nonlinear
properties of the medium but are determined completely by
the “continuity” equation and the condition �59� of potenti-
ality of the flow. Therefore we can change the “reference
frame” in such a way that the transversal velocity �wave
vector u� is equal to zero at �
�→�. This means that we
rotate the reference frame to the angle �=arctan a and pass
to the frame “moving” with “velocity” �U cos � ,U sin �� as
z increases, which means the change of coordinates

x̃ = x cos � − y sin � − U cos � · z ,

ỹ = x sin � + y cos � − U sin � · z . �64�

Correspondingly, the velocity field transforms as

ũ = �u − U�cos � − v sin � ,

ṽ = �u − U�sin � + v cos � . �65�

Substitution of Eq. �61� gives

ũ = c�1

�
− 1�, ṽ = 0, �66�

where we have introduced the parameter

c =
U

	1 + a2
. �67�

In new variables the velocity field does not have a compo-
nent along the ỹ coordinate. The variable 
 takes the form

=	1+a2�x̃+cz� and hence the intensity � does not depend
on the ỹ coordinate. Thus in the new coordinate system we
have a one-dimensional �1D� dark soliton moving with ve-
locity c in the negative direction of the x̃ axis. This transfor-
mation will be used below in the study of stability of dark
solitons.

The introduction of the parameter c permits one to repre-
sent Eq. �63� as

1

8
�d�

d�
�2

= −
�

�2 ln�1 + ��� + � 1

�1 + ���
−

c2

2
��2

+ �c2 +
1

�2 ln�1 + �� −
1

��1 + ���� −
c2

2

 Q��� , �68�

where �= x̃+cz. The function Q��� has a double zero at �

=1 which corresponds to the tails of soliton. Another zero at
�=�m corresponds to the minimal intensity at the center of
soliton, which is therefore related to the parameter c as

c =
1

1 − �m

2�m

�
� 1

�
ln

1 + �

1 + ��m
−

1 − �m

1 + �
��1/2

. �69�

Taking into account Eq. �67� we find the expression for the
slope a as a function of �m:

a = � U2�1 − �m�2�

2�m��1/��ln��1 + ��/�1 + ��m�� − ��1 − �m�/�1 + ����

− 1�1/2

. �70�

The slope of the most shallow solitons with �m→1 is equal
to

amin = 	�1 + ��2U2 − 1 = 	M2 − 1, �71�

that is, it coincides with the Mach cone.
The profile of the light intensity across the oblique soliton

can be obtained by a straightforward numerical integration of
Eq. �68�. In Fig. 8 we compare such a profile with the profile
of the diffraction pattern obtained by direct numerical simu-
lation using original Eqs. �5� and �6�. Good agreement be-
tween these two profiles as well as characteristic behavior of
the phase of the wave function shown in the lower panel of
Fig. 8 confirm that the pattern in Fig. 2 inside the Mach cone

0 10 20 30 40 50 60
y

−2

−1

0

1

2

ph
as

e

−0.5

0

0.5

1

1.5

ρ
x=100 numerics
x=400 numerics
x=100 a=10.58 eq.(63)
x=400 a=10.58 eq.(63)

crosses

circles

FIG. 8. Upper panel: Profiles of the intensity distributions for
x=100 �dashed line�, x=400 �solid line� and y�0 obtained from
numerical solution of Eq. �5� with the nonlinear term given by Eq.
�6� for U=5, �=0.2, z=120. These profiles are compared with the
soliton profiles obtained by solutions of Eq. �63� with slope a
=10.58 shown as functions of y at the same values of x �x=100
corresponds to “crosses” and x=400 to “circles”�. Lower panel:
Profiles of the phase variation along the same cross sections of the
numerically calculated wave function of the condensate. Jumps of
phase correspond to the well-known behavior of the phase across
dark solitons.
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indeed consists of oblique dark solitons generated by nonlin-
ear diffraction of the light beam on the obstacle.

V. STABILITY OF OBLIQUE SOLITONS

The solitons profiles investigated in the preceding section
are reached asymptotically as z→�. However, the patterns
calculated for finite z and shown in Fig. 2 indicate that some
oscillations of intensity take place along the oblique solitons.
Amplitude of these oscillations increases with distance from
the obstacle which leads to generation of vortices at the end
points of solitons. In fact, instability of dark 2D solitons with
respect to transverse perturbations resulting in its nonlinear
stage formation of vortices is well known �see �1��. Actually,
just this instability prevents formation of dark solitons in the
case of subsonic velocity of the flow. This situation is illus-
trated in Fig. 9 where the wave pattern at the output plane is
shown for the Mach number M =0.9. As one can see, only
vortices are generated because dark solitons are absolutely
unstable and cannot be created as stationary structures of the
diffraction pattern.

However, in the case of formation of dark solitons in the
flow of Bose-Einstein condensate past an obstacle it was
found �30� that the amplitude of oscillations decreases with
growth of time at fixed distance from the obstacle for a large
enough value of the oncoming flow velocity. This suggests
that absolute instability of dark solitons transforms into their
convective instability in the reference frame attached to the
obstacle at some critical value of the flow velocity �31�. This
means that wave packets built of unstable modes of the soli-
ton’s disturbance are convected so fast by the flow that in-
stability cannot develop at a finite distance from the obstacle.
The criterion of transition to the convective instability for a
Bose-Einstein condensate evolving according to the Gross-
Pitaevskii equation �see Eq. �7�� was derived in �31� and here
we shall extend the analysis of �31� to the photorefractive
Eq. �4�.

A. Shallow solitons (Kadomtsev-Petviashvili approximation)

The theory is especially simple in the limit of small-
amplitude solitons when the GNLS Eq. �5� can be reduced to

the Kadomtsev-Petviashvili �KP� equation by means of stan-
dard reductive perturbation theory, which yields

�− 2cs�z� + 2cs
2�x̃� + �3f���0� + �0f���0�����x̃� −

1

4
�x̃x̃x̃� �

x̃

+ cs
2�ỹỹ� = 0, �72�

where ��	�0 denotes the intensity perturbation, small com-
pared with the background intensity �0, x̃ is a coordinate
along a soliton, and ỹ is a transverse coordinate. We trans-
form it to the standard form by introducing the new variables

z̃ =
z

2cs
, �̃ = x̃ + csz, �̃ =

ỹ

cs
,

�̃ = −
1

3
�3f���0� + �0f���0���� �73�

to obtain

��̃z + 3�̃�̃�̃ +
1

4
�̃�̃�̃�̃�

�̃

= �̃�̃�̃. �74�

As is well known, the KP equation �74� has the soliton so-
lution

�̃s =
s

cosh2�	s��̃ − sz̃��
=

s

cosh2
„
	s�x̃ + �cs − s/�2cs��z�…

,

�75�

where the parameter s is small,

s

cs
2 	 1, �76�

in accordance with the condition that the soliton is shallow.
This solution is written in the reference frame with u→0 as
x→�.

The soliton solution �75� is unstable with respect to trans-
verse perturbations �38,39�. If we perturb the solution �75�
along the ỹ axis,

�̃ = �̃s��� + ��̃, ��̃ = W���exp��z + ipỹ�, � = x̃ + cỹ ,

�77�

then in linear approximation we obtain equation for W:

�− W��� + 4sW� − 12��̃sW���� − 4p2W = 4�W�. �78�

This eigenvalue problem was studied in �39,40� where the
following spectrum for the instability growth rate was ob-
tained:

��p� = �p/	3�	s − 2p/	3. �79�

Thus in the reference frame with u→0 at x→� the soliton is
absolutely unstable.

However, we are interested in the behavior of the soliton
transformed to the reference frame “attached” to the obstacle
by the substitution �64�:

FIG. 9. Diffraction pattern at the output plane at the length z
=120 and Mach number M =0.9. The patterns are obtained by nu-
merical solution of Eq. �4� with V�r� corresponding to an ideally
reflecting wire with unit radius for �=0.2.
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�̃s = s cosh−2�	 s

1 + a2�x − ay + 
�cs −
s

2cs
�

�	1 + a2 − U�z�� . �80�

The relationship between the soliton parameter s and the
slope a follows from the condition that the oblique soliton
solution does not depend on z:

s = cs
2�1 −

M2

1 + a2� , �81�

where we took into account Eqs. �13� and �76�. After the
transformation to the “obstacle” frame we easily get the dis-
persion relation

� = ��p� = �p + i
p
	3
	s −

2p
	3

,

� = U sin 
 =
Ma

�1 + ��	1 + a2
�82�

for waves propagating along the oblique soliton with the
wave number p. The stability of the soliton is determined by
the asymptotic behavior of the wave packets built of har-
monic waves. Due to the term �p in the dispersion relation,
the wave packets are convected by the flow along the soliton.
If they are convected fast enough, then amplitude of the un-
stable disturbance cannot increase at a fixed distance from
the obstacle and, as a result, the soliton is just convectively
unstable �31�. As was shown in �31�, for shallow KP solitons
the criterion of transition from absolute to convective insta-
bility reads

�2 � s . �83�

Then substitution of Eqs. �81� for s and Eqs. �82� for � gives
at once

M � 1. �84�

Thus the shallow solitons are convectively unstable for “su-
personic” values of transverse wave vector U.

B. Deep solitons

Now we consider stability of soliton solutions of the pho-
torefractive Eq. �4� with dropped external potential:

i
��

�z
+

1

2
��� −

���2

1 + ����2
� = 0. �85�

Stability of solitons for the case of 2D NLS equation ��
=0� was studied in �41�. We shall write the soliton solution
of Eq. �85� in the form

�s��� = 	�s��� exp�i�s��� −
iz

1 + �
� , �86�

where �s��� is given by the solution of Eq. �68� and

��s

��
= c� 1

�s���
− 1� . �87�

The disturbed function � can be taken in the form

� = �s��� + ��� + i���exp�i�s��� −
iz

1 + �
� . �88�

Here �� and �� depend on y and z as exp�ipy+�z�. Substi-
tution of Eq. �88� into Eq. �85� and linearization with respect
to �� and �� yields the linear spectral problem

�− A L1

L2 A
����

��
� = �� ��

− ��
� , �89�

where

A =
c

�s
� �

��
−

�s,�

2�s
� , �90�

L1 =
1

2

�2

��2 +
1

2
�c2 − p2� +

1

1 + �
−

1

2

c2

�s
2 −

3�s + ��s
2

�1 + ��s�2 ,

�91�

L2 =
1

2

�2

��2 +
1

2
�c2 − p2� +

1

1 + �
−

1

2

c2

�s
2 −

�s

1 + ��s
. �92�

The function �s is considered here as known for a given
value of the soliton velocity c; hence the system �89� can be
solved numerically which yields the spectrum of the growth
rate �=��p� for all values of c.

Again, we transform this solution to the reference frame
attached to the obstacle and arrive at the dispersion relation

��p� = �p + i��p� . �93�

This equation determines implicitly the function p= p���.
The type of stability is determined by the location of branch-
ing points pbr of this function �see, e.g., �42�� where
d� /dp=0, which gives the equation

� = − i
d�

dp
, �94�

which determines the branching point pbr as a function of �
at a given value of c. As was shown in �31�, the critical value
�cr for the transition from absolute to convective instability
is determined by the condition that the function pbr��� has a
branching point at �=�cr. This gives the equation

�d2�

dp2 �
p=pcr

= 0, �95�

the solution of which gives the critical value pcr for a given
c. An example of the plot of the absolute value of the func-
tion ��p� is shown in Fig. 10 for �=0.1 and soliton velocity
c corresponding to the minimal intensity �m=0.2 and calcu-
lated by means of Eq. �69�. It has an inflection point at p
= pcr in the region where ��p� is purely imaginary; thus pcr
can be calculated for a set of values of �m in the interval 0
��m�1.
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When pcr is found as a function of �m, we can substitute
its value into Eq. �94� to obtain the critical value of �, again,
as a function of �m:

�cr��m� = − i�d��p,�m�
dp

�
p=pcr

. �96�

Now we substitute the relation

c =
M

�1 + ��	1 + a2
�97�

into �=Ma / ��1+��	1+a2� to find �=ca which gives the
slope parameter as a function of �m:

a��m� =
�cr��m�
c��m�

, �98�

where c��m� is given by Eq. �69�. At last, substitution of this
function into Eq. �97� yields Mcr as a function of �m:

Mcr��m� = �1 + ��c��m�	1 + a2��m� . �99�

Equations �98� and �99� determine the critical value of the
Mach number as a function of the slope a in a parametric
form with 0��m�1 playing a role of the parameter. Results
of numerical computation of this function for several values
of � are shown in Fig. 11. Below these curves oblique soli-
tons are absolutely unstable and cannot be created by the
flow of light past an obstacle: perturbation of the flow behind
the obstacle decays into vortices without formation of soli-
tons. Above these curves, the oblique solitons become con-
vectively unstable and their length grows faster than they
decay into vortices. Hence vortices exist at the end points of
solitons only and there is a region where the soliton profile is
close to the stationary solution found in the preceding sec-

tion, which was confirmed by numerical simulations.

VI. CONCLUSION

In this paper, we have developed the theory of formation
of the wave pattern of light propagating through nonlinear
photorefractive medium with a reflecting wire embedded in
the medium. The light beam is supposed to be tilted with
respect to the wire, which creates the “flow of light past an
obstacle” analogous to that realized in experiments on super-
fluid flow of Bose-Einstein condensate past an obstacle. An
analogy between propagation of light beams and superfluid
dynamics suggests that a similar diffraction pattern can be
observed in optical experiments. We have shown that the
diffraction pattern consists of two regions separated by the
“Mach cone.” In the region outside the Mach cone the so-
called “ship waves” are generated while inside this Mach
cone the nonlinear dispersive shocks transforming into ob-
lique soliton trains are situated. The simplest case, when just
a single soliton is generated, is studied in detail. The main
parameters of the oblique optical soliton are determined and
it is shown that it is actually stable �more precisely, convec-
tively unstable� with respect to small transverse perturbations
for large enough values of transverse wave vector of the light
beam. Detailed theory of ship waves is also given. All our
findings are confirmed by numerical simulations. Since opti-
cal experiments seem more feasible than the experiments
with ultracold gases, one may hope that our predictions
could be verified experimentally.
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