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Abstract

Considering the static solutions of the D-dimensional nonlinear Schrodinger equation with trap and attractive two-body¨
interactions, the existence of stable solutions is limited to a maximum critical number of particles, when DG2. In case
Ds2, we compare the variational approach with the exact numerical calculations. We show that, the addition of a positive
three-body interaction allows stable solutions beyond the critical number. In this case, we also introduce a dynamical
analysis of the conditions for the collapse. q 2000 Published by Elsevier Science B.V. All rights reserved.
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Recent experiments on Bose Einstein Condensa-
Ž . w xtion BEC 1–4 have brought great attention to its

theoretical formulation. Atomic traps are effectively
Ž .described by the Ginzburg–Pitaevskii–Gross GPG

formulation of the nonlinear Schrodinger equation¨
Ž . w xNLSE 5–7 , which includes two-body interaction.
When the atoms have negative two-body scattering
lengths, a formula for the critical maximum number

w x w xof atoms was presented in Ref. 8 . In Refs. 9–12 ,
the formulation was extended in order to include the
effective potential originated from three-body inter-
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action. In this case, in three-dimensions, it was shown
that a kind of first order phase-transition occurs. In
this connection, as also considered in the motivations

w xgiven in Ref. 10–12 , it is relevant to observe that
recently it was reported the possibility of altering
continuously the two-body scattering length, from
positive to negative values, by means of an external

w xmagnetic field 13 . Within such perspective, the
two-body binding energy can be close to zero, and
one can approach the so-called Efimov limit, which
corresponds to an increasing number of three-body

w xbound states 14 . Near this limit, nontrivial conse-
quences can occur in the dynamics of the conden-
sate, such that one should also consider three-body
effects in the effective nonlinear potential.

In the present work, we study the critical number
of atoms in arbitrary D-dimensions, using a varia-
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tional procedure; and also by an exact numerical
approach in the case of dimension Ds2. The D-di-
mensional NLSE, with attractive two-body interac-
tions, was previously analyzed in models of plasma

w xand light waves in nonlinear media 15,16 . The
collapse conditions, in this case, were investigated

w x w xwithout 17 and with 18,19 the harmonic potential
term. In case of Ds3, it was shown that a repulsive
nonlinear three-body interaction term can extend
considerably the critical limit for the existence of

w xstable solutions 9–12 .
Motivated by the observed high interest in stable

solutions for arbitrary D, we look for variational
Žsolutions in a few significant cases Ds1, 2, 4 and

.5 not previously considered, when a three-body
interaction term, parametrized by l , is added to the3

effective non-linear interaction that contains a two-
body attractive term. Our analysis also shows that, as
in case of Ds3, a kind of first-order phase-transi-
tion can occur when DG4, for certain cases of
l G0. In the present paper, we have also considered3

w xthe approach given in 20 , in order to study the
stability conditions in the case of arbitrary D, when

Ž .the non-linear interaction contains two attractive
and three-body terms.

In order to obtain an analytical approach and
verify the validity of the variational Ritz method, we
consider in detail the case of Ds2, with and with-
out the three-body term, comparing the variational
results with exact numerical calculations for some
relevant physical observables. In this case, we also

w xdiscuss how the method given in 17 can be ex-
tended in order to approach analytically the exact
value for the total energy.

By extending the GPG formalism from three to D
w xdimensions, including two 21 and three-body inter-

w xactions in the effective non-linear potential 10,11 ,
we obtain

dc
i"

dt

2 2 2
" mv r

2 42 < < < <s y = q ql c ql c c ,2 32m 2

1Ž .

Ž .where c'c r,t is the wave-function normalized
to the number of atoms N, v is the frequency of the

trap harmonic potential and m is the mass of the
atom. l and l are, respectively, the strength of the2 3

two- and three-body effective interaction, given in a
< <D-dimensional space. r' r is the hyperradius, such

that r'ÝD r e andˆis1 i i

D E
=' êÝ i E riis1

Ž .e is the unit vector, with is1,2, . . . D .ˆi

The stationary solutions for the chemical potential
m are given by

dc
i" smc . 2Ž .

dt

Ž .Considering the general solution of Eq. 1 ,

dc dHH
i" s ,

wdt dc

one can obtain the total energy E:

Es d D r HH ,H
"

2 mv 2 r 2 l22 2 4< <with HH' =c q c q c
2m 2 2

l3 6< <q c . 3Ž .
3

Here we consider only attractive two-body inter-
action, which is more interesting in the case of

2 < <trapped atoms. For D s 3, l ' y4p " a rm,2

where a is the two-body scattering length and m is
the mass of the atom. In the case of arbitrary D, l2

has dimension of energy times LD, where L is a
length scale in such space. However, a convenient
redefinition of the wave-function in terms of dimen-
sionless variables will absorb this constant, as will be
shown.

Our study will be concentrated on the ground
state for a spherically symmetric potential. We first
consider the case of l s0, using a variational3

procedure, with a trial Gaussian wave-function for
Ž .c r , normalized to N, given by

Dr4 21 mv r mv'c r s N exp y ,Ž .var 2 2 ž /ž /" "pa 2a

4Ž .
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where a is a dimensionless variational parameter.
Ž .From Eq. 3 , the corresponding expression for the

total variational energy can be expressed as

N
E s"v EE , 5Ž .var var

n

D Da 2 n 2VD
EE 'n q yvar 2 Dr2 Dž /44a 4 2p aŽ .

G n 3V 2
3 D

q , 6Ž .D D r2 2 D6p 3 a

where V is the solid angle in D dimensions,D

2p D r2 l3
V ' , G ' "v , andD 3 2G Dr2Ž . 2 lŽ .2

Dr2N 2l mv2
n'y . 7Ž .ž /V "v "D

'By using dimensionless variables, x' mvr" r,
we redefine the wave-function c as

< <2 l2
f x ' c r , 8Ž . Ž . Ž .(

"v

such that

Dr2< <2 l mv22 D< <f x d xsN snV . 9Ž . Ž .H Dž /"v "

The dimensionless equation corresponding to Eq.
Ž .1 , can be rewritten as

2D d
2 42 < < < <y qx y f qG f y2b fs0,Ý i 32ž /dxi1

10Ž .

Ž .where b'mr "v is the dimensionless chemical
Ž . Ž .potential. From Eqs. 8 and 4 , the trial wave-func-

tion can be written as

Dr4 21 x
f x ' nV exp y . 11Ž . Ž .(var D 2 2ž / ž /pa 2a

The variational results, obtained by using the
above expressions can be extended analytically to
non-integer values of the dimension D. Minimiza-

w Ž .x 2tion of the energy Eq. 5 , with respect to a , is
done numerically by sweeping over a 2 values. The

results for the energy and the chemical potential are
shown in Fig. 1. For each value of D, one can
observe a critical number of atoms, N , related to thec

critical parameter n , only when DF2. This criticalc

limit corresponds to the cusps in the upper plot of
Fig. 1 and is also observed using exact numerical
calculation for Ds3. It is also interesting to note
that for D)2 there are two branches of solutions for
EE and b , one stable and the other unstable. In thevar

energy, the lower branch corresponds to stable solu-
Ž .tions minima , while the upper one gives unstable

Ž .solutions maxima .
The case with Ds2 is particularly interesting, as

no unstable solutions exist and there are stable solu-
tions only for n-2, such that n s2. For Ds2, thec

Ž . 2minimization of Eq. 5 in respect to a leads to

n
EE sn 1y . 12Ž .(var 2

The behavior of n , and the corresponding critical
limits, as one alters the dimension D, has other
curious particular results. For example, the critical

Ž ŽD. Ž3.limit n has a minimum for Ds3 n Gn forc c c
.all D .

In conclusion of this part of our work, considering
arbitrary D with l s0, there are no stable solutions3

Ž .Fig. 1. The variational energy EE upper part and chemical poten-
Ž .tial b lower part , as functions of the reduced number of atoms

n , for several values of the dimension D, indicated in each plot.
All the quantities are in dimensionless units, as defined in the text.
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Ž . Ž .for Eq. 1 , if the wave-function f x , given by Eq.
Ž .9 , is normalized to n)n . Fig. 1 shows that thisc

restriction is strongest for Ds3: n is a minimumc

when compared with n for D/3. This is a relevantc

result, considering that n is directly proportional to
the number of atoms. Also, it is observed that nc

increases very fast for D)3.
Ž .Next, we also solve Eq. 10 exactly employing

the shooting and Runge–Kutta methods, and com-
pare the results with the corresponding variational
ones. In this case, we consider only the particular
interesting case of Ds2, with l s0. The results3

are shown in Fig. 2, for the chemical potential b , the
² 2:total energy EE, mean-square-radius x , and the

< Ž . < 2central density f 0 . In order to numerically solve
Ž .Eq. 10 , in the sywave, we first write it in terms

2 2of the single variable x' x qx and consider(Ž .1 2
XŽ . Žthe following boundary conditions: f 0 s0 where

X .stands for the derivative with respect to x and
Ž . Ž 2 w x Ž ..f x ™Cexp yx r2q by1 ln x when x™

`, where C is a constant to be determined. As
observed in Fig. 2, the critical limit n s2 obtainedc

analytically using the variational approach should be

Fig. 2. For Ds2, we present the variational and exact numerical
Ž . Ž .calculations of the chemical potential b , total energy EE ,

Ž² 2:. Ž < Ž . < 2 .mean-square-radius x , and central density f 0 , as a
function of the reduced number of atoms n . All the quantities are

Ž .in dimensionless units see text . The solid line curves correspond
to exact numerical results, while the dashed curves are the varia-
tional results.

Fig. 3. Exact numerical solutions for Ds2, of the chemical
potential, b , in dimensionless units, given as function of the
reduced number of atoms n , for different values of the three-body
parameter G , when the space dimension is Ds2. As shown,3

only when G F0 the number of atoms is limited to certain3

critical number.

compared with n s1.862, obtained by exact numer-c

ical calculation. This critical limit was first obtained
w xby Weinstein 17 , in a non-linear approach with

two-body term, without the trapping potential. The
coincidence of the value with our exact calculation is
due to the fact that at the critical limit the mean
square radius goes to zero.

We have also compared the results obtained by
the variational approach with the exact numerical
one, in the case of Ds2, for several values of the

Ž .three-body interaction term positive and negative ,
as shown in Figs. 3 and 4. In Fig. 3 we have the

Fig. 4. The variational solutions for Ds2, of the chemical poten-
tial, corresponding to the exact results given in Fig. 3.
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exact numerical approach and in Fig. 4 we have the
corresponding variational results. By comparing the

Ž .results we have for Ds2 shown in Figs. 3 and 4
w xwith the ones obtained in Ref. 10,11 for Ds3, we

should observe that no first order phase-transition
w xexists in two dimensions. As observed in Refs. 9,12 ,

for Ds3, a first-order phase-transition can occur in
trapped condensed states with negative two-body
scattering length, when a repulsive three-body
Ž .quintic term is added in the Hamiltonian. As shown
in Figs. 3 and 4, with G positive the range of3

stability for the number of atoms N can be increased
indefinitely; with G negative this range is reduced.3

We can analyze the collapse conditions using ‘the
w xvirial theorem’ approach 20 . The mean square ra-

² 2:dius, r , of a D-dimensional condensate, is given
by

2² 2:d r
2 2² :q4v r2dt

1
2² : ² < < :s 4 H ql Dy2 cŽ .2m

4l3 4² < < :q Dy1 c , 13Ž . Ž .
3

where
1

D †² :OO ' d rc r ,t OOc r ,t 14Ž . Ž . Ž .H
N

² :and H sErN. When l s0 we obtain the equa-3
w xtion derived in 20 .

Ž .We can also write the Eq. 13 in dimensionless
Ž . Ž .units, as it was done in Eqs. 8 – 10 :

2² 2:d x 4 EE
2² :q4 x s q2 f t , 15Ž . Ž .2 ndt

where
l Dy2 Dy12 2 4² < < : ² < < :f t ' f qG f .Ž . 3< <l 4 32

16Ž .
² 2: ² 2:Using the initial conditions for x and d x rdt ,

² 2:where, for simplicity, we assume d x rdts0, the
Ž .solution of Eq. 15 is given by

EE EE
2 2² : ² :x s q x y cos 2tŽ .0

n n

t
X X Xq f t sin 2 tyt dt . 17Ž . Ž . Ž .Ž .H

0

The stability regions and the estimates for the
collapse time can be obtained from the analysis of
this solution, like as performed for the case l s0 in3
w x24 . Let us analyze the dynamics when Ds2. In

² 2:this case, l does not appear explicitly in x and2
Ž .f t also does not depend on this parameter:

1. For a positive G , negative l and EE)0 we3 2
² 2:observe that x cannot be zero and the conden-

sate is stable. The mean square radius of the
condensate oscillates in time around a finite value.
This is confirmed by the numerical simulations
Ž .see 3 and 4 .

2. For a negative G , positive l an analysis of3 2
w xstability like the one performed in Ref. 24 shows

that
Ž .i When the total energy EE-0, the condensate
is unstable and the wavefields collapse in a finite
time at any initial conditions;
Ž . Ž .ii When EE)0, as the function f t is negative,
the contribution of the integral term for t-p is
negative. Then, we found the collapse condition
as

EE
2² : <x G2 . 18Ž .0

n

The same kind of analysis, for D)2, is much
involved in the present approach, as the sign of the

Ž .function f t is not fixed at opposite signs for the
parameters l and l .2 3

Some information about the dynamics of the col-
lapse can also be obtained by using the techniques

w xbased on integral inequalities 17,25 . For instance,
when Ds2, we can estimate the three-body term
contribution in E, following the procedure given in
w x17

22< <=c
6 22 2 2< < < <d r c FC d r d r cH H H2 ž /ž /2m

sC K 2N , 19Ž .2

where K is the kinetic energy and C is defined2

from the minimization of the functional
2

2 22 2< < < <d r =c d r cH Hž / ž /
JJs . 20Ž .

62 < <d r cH
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Combining with the corresponding estimate for
2 < < 4 Ž .Hd r c , we obtain E)E K , where

v 2N 2 l l2 3 2E K sKq q C NKq C K N.Ž . 1 24K 2 3
21Ž .

w xWhen l s0 we get the equation derived in 20 .3
Ž .Eq. 21 should be compared with the corresponding

Ž .variational expression 5 , where the kinetic energy
Ž 2 .is given by KsN"vr 2a and a is the width of

the cloud. As we see, the expression for the energy
Ž .21 is very similar to the obtained by the variational

Ž .approach. However, 21 is valid for arbitrary time
and describes the nonstationary dynamics. By using

Ž .the variational expression upper limit for the
Ž .ground-state, and the right-hand-side of Eq. 21

Ž .lower limit , we can approach analytically the exact
solution for the total energy

E K -E-E . 22Ž . Ž .var

For a more deep insight to the problem of stability,
we need to obtain the values of the constants C and1

C . This problem requires a generalization of the2
w xmethod suggested by Weinstein in 17 , to be consid-

ered in a future work.
We should observe that exact numerical results,

when G s0, have already been considered in Refs.3
w x Ž . w x Ž .22,23 for Ds1 and Ds3 , in 10,11 for Ds3 ,

w x Ž . w xand in 26 for Ds2 . In 9–12 , for Ds3, it was

ŽFig. 5. Variational solutions for the chemical potential in dimen-
.sionless units as functions of n , for Ds1 and different values of

the three-body parameter G .3

Fig. 6. The same as in Fig. 5, for Ds4.

also considered the case with G /0, and shown a3

kind of first-order phase-transition in the condensate.
In the present work, we have extended the varia-
tional formalism, in case G /0, for an arbitrary3

D-dimension. In the Figs. 5, 6 and 7, we present our
results for the chemical potential as a function of n ,
for a set of given values of G , in case of Ds1, 43

and 5. As one can observe in Fig. 5, even in case of
Ds1 one can reach a critical maximum limit for n ,

Žwhen G is enough negative. For Ds4 and 5 Fig.3
.6 and 7 , we observe similar picture of first-order

phase-transition occurring for some specific values
of G .3

In conclusion, in the present work, we first stud-
ied the stability and the critical number of atoms in

Fig. 7. The same as in Fig. 5, for Ds5.
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arbitrary D-dimensions using a variational proce-
Ž .dure, for the case we have two-body attractive and

three-body contributions. This part extends a previ-
w xous analysis done in Refs. 18,19,24 . Next, we

considered in more detail the case Ds2. We com-
pared the variational results with exact numerical
calculations for the chemical potential, total energy,
mean-square-radius and density. Finally, we ex-
tended numerically the approach for Ds2, includ-
ing an effective three-body interaction term. We
studied the sensibility of the critical numbers with
respect to corrections in the non-linear interaction.
The effective interaction considered in the equation
contains a trapped harmonic interaction, and two

< < 2nonlinear terms, proportional to the density c

Ž . < < 4due to first-order two-body interaction and to c

Ž .due to first-order three-body interaction . We also
verified, by a variational procedure, that a critical
number of particles exists only for DG2, when the
nonlinear term of the NLSE contains just the cubic
term. In case of Ds1, a critical maximum number
of atoms can exist with the addition of a negative

Ž .quintic term three-body in the NLSE. In all cases
where the number of atoms is limited, we observed

< < 4that the addition of a positive c allows stable
solutions beyond the critical number. We also intro-
duced an analysis of the collapse conditions, using

w x‘the virial theorem’ approach given in 20 . The
dynamics of the collapse was discussed in terms of

w xthe techniques developed in 17 . In particular, we
showed how the exact energy can be approached in
the case of Ds2 with two and three-body term
contributions.
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