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Abstract

The problem of generation of atomic soliton trains in elongated Bose–Einstein condensates is considered in fr
of Whitham theory of modulations of nonlinear waves. Complete analytical solution is presented for the case when t
density distribution has sharp enough boundaries. In this case the process of soliton train formation can be viewed as a
Fresnel diffraction of matter waves. Theoretical predictions are compared with results of numerical simulations of o
three-dimensional Gross–Pitaevskii equation and with experimental data on formation of Bose–Einstein bright solitons
shaped traps.
 2003 Elsevier B.V. All rights reserved.
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Realization of Bose–Einstein condensate (BE
[1–3] has created new active field of research of qu
tum macroscopical behavior of matter. Among m
spectacular evidences of such macroscopic beha
one can mention formation of interference fringes
tween two condensates [4] and creation of dark [5
and bright [7,8] solitons. The interference pheno
enon is usually considered in framework of a line
wave theory, whereas solitons are treated as a no
ear wave effect. At the same time, basically, these
phenomena have much in common. For example,
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mation of bright soliton trains in nonlinear wave sy
tems is often explained as a result of modulational
stability, where selection of the most unstable mod
a result of interplay of interference and nonlinear
fects (see, e.g., [9,10]). Such interconnection of in
ference and soliton phenomena is demonstrated m
spectacularly in formation of solitons in vicinity of
sharp edge of density distribution. In this case, at
ear stage of evolution the linear diffraction provid
an initial modulation of the wave and further com
bined action of interference and nonlinear effects le
to formation of soliton trains. Without nonlinear e
fects, such kind of time evolution of a sharp wave fro
would be a temporal counterpart of usual spatial F
nel diffraction and therefore soliton train formation
.
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the sharp front of nonlinear wave can be called a n
linear Fresnel diffraction.

Similar formation of oscillatory structures at sha
wave front or after wave breaking in modulationa
stable systems described by the Korteweg–de V
equation is well known as a “dissipationless sho
wave” (see, e.g., [10]). Its theoretical description
given [11,12] in framework of Whitham theory of no
linear wave modulations [13], where the oscillato
structure is presented as a modulated nonlinear p
odic wave which parameters change little in one wa
length and one period. Then slow evolution of the
rameters of the wave is governed by Whitham eq
tions obtained by averaging of initial nonlinear wa
equations over fast oscillations of the wave. Appli
tion of this method to modulationally unstable syste
has been given for important particular case of soli
train formation at the sharp front of a long step-li
initial pulse [14–17]. Here we shall consider by th
method formation of solitons in BEC with negativ
scattering length (attractive interaction of atoms).

We suppose that condensate is confined in a v
elongated cigar-shaped trap whose axial frequencωz

is much less than the radial frequencyω⊥. In the first
approximation we can neglect the axial trap poten
and suppose that condensate is contained in a cylin
cal trap (ωz = 0) and its initial density distribution ha
a rectangular form. Evolution of BEC is governed
three-dimensional (3D) Gross–Pitaevskii (GP) eq
tion

(1)

ih̄ψt = − h̄2

2ma

∆ψ + 1

2
maω

2⊥
(
x2 + y2)ψ + g|ψ|2ψ,

for the condensate wave functionψ , where we use
standard notationg = 4πh̄2as/ma for the effective
nonlinear coupling constant,as < 0 is thes-wave scat-
tering length, andψ is normalized on the number o
particles in BEC,

∫ |ψ|2dr = N. For analytical treat-
ment of nonlinear Fresnel diffraction it is importa
to determine conditions when the 3D equation (1)
be reduced to its one-dimensional (1D) approximat
(see, e.g., [18])

(2)

ih̄Ψt = − h̄2

2ma

Ψzz + g1D|Ψ |2Ψ,
∫

|Ψ |2dz =N,
where

(3)g1D = g

2πa2⊥
= 2h̄2as

maa
2⊥
, a⊥ =

√
h̄

maω⊥
,

that is the transversal degrees of freedom are fro
It is well known (see, e.g., [10]) that a homogeneo
distribution with linear densityn0 = |Ψ |2 = const
described by (2) with negativeg1D (as < 0) is unstable
with respect to self-modulation with increment
instability equal in our present notation to

(4)Γ = h̄K

2maa⊥

√
8|as|n0 − (a⊥K)2,

whereK is a wavenumber of small periodic modul
tion. The most unstable mode has the wavenumbe

(5)Kmax= 2
√|as|n0 /a⊥

and the corresponding increment is equal to

(6)Γmax= 4|as|n0ω⊥.

This means that after time∼ 1/(|as|n0ω⊥) the homo-
geneous condensate splits into separate solitons
fraction fringes) and each soliton (diffraction fring
contains aboutNs ∼ n0/Kmax atoms. If in 3D GP
equation (1) the nonlinear energygNsKmax/a

2⊥ ∼
gn0/a

2⊥ in each solitons is much less than the kine
energy in the transverse direction,∼ h̄2/maa

2⊥, then
the transverse motion is reduced to the ground s
oscillations and the 3D condensate wave function
be factorized intoψ = φ0(x, y)Ψ (z, t), whereφ0 =
(
√
π a⊥)−1 exp[−(x2+y2)/(2a2⊥)] is the ground state

wave function of transverse motion, andΨ (z, t) obeys
to the effective 1D nonlinear Schrödinger (NLS) equ
tion (2). Thus, the condition of applicability of 1D
equation (2) for description of solitons formation is

(7)n0|as | � 1,

which means that the instability wavelength∼ 1/Kmax
is much greater than the transverse radiusa⊥ of BEC.
If (7) is not satisfied, then the transverse motion ha
be taken into account which may lead to collapse
BEC inside each separate soliton. Therefore we s
confine ourselves to the BEC described by the 1D N
equation under supposition that the initial distributi
satisfies the condition (7).

To simplify formulae in the analytic theory, w
transform (2) to dimensionless variablesτ =
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2(|as |n0)
2ω⊥t , ζ = 2|as |n0z/a⊥, Ψ = √

2|as|n0u, so
that (2) takes the form

(8)iuτ + uζζ + 2|u|2u = 0,

and u is normalized to the effective lengthL of
the condensate

∫ |u|2dζ = L/a⊥ measured in units
of a⊥. We are interested in the process of format
of solitons (nonlinear Fresnel diffraction fringes)
the sharp boundary of initially rectangular distributio
Since this process takes place symmetrically at b
sides of the rectangular distribution, we can confi
ourselves to the study of only one boundary. T
limitation remains correct until the nonlinear wav
propagating inside the condensate collide in its cen
If the initial distribution is long enough, this tim
is much greater than the time of solitons formatio
Thus, we consider the initial distribution in the form

(9)u(ζ,0)=
{
γ exp(−2iαζ ), for ζ < 0,
0, for ζ > 0,

whereγ is the height of initial step-like distributio
and α characterizes the initial homogeneous pha
The problem of this kind has already been cons
ered in some other problems of nonlinear phys
[10,14–17] and we shall present here only the m
results.

Due to dispersion effects described by the sec
term in Eq. (8), the sharp front transforms into sligh
modulated wave which describes usual Fresnel
fraction of atoms. In our case the diffraction patte
evolves with time rather than is “projected” on the o
servation plane. The linear stage of evolution is f
lowed by the nonlinear one in which combined act
of dispersion and nonlinear terms yields the patt
which can be represented as a modulated nonlinea
riodic wave or, in other words, a soliton train. We su
pose that this soliton train contains large enough n
ber of solitons, so that their parameters change littl
one wavelength and one period. Then, in framewor
Whitham theory, the density of BEC can be appro
mated by a modulated periodic solution of Eq. (8) (s
[10,17])

n = ∣∣u(ζ, τ )∣∣2
= (γ + δ)2

(10)− 4γ δ sn2
(√

(α − β)2 + (γ + δ)2 θ,m
)
,

-

where sn(x,m) is the Jacobi elliptic function,

(11)θ = ζ − V τ, V = −2(α + β),

(12)m= 4γ δ/
[
(α − β)2 + (γ + δ)2

]
,

the parametersα andγ are determined by the initia
condition (9), andβ and δ are slow functions ofζ
and τ . Their evolution is governed by the Whitha
equation

(13)
∂(β + iδ)

∂τ
+ v(β, δ)

∂(β + iδ)

∂ζ
= 0,

where Whitham velocityv(β, δ) is given by the
expression

v(β, δ)

= −2(α + β)

(14)

− 4δ[γ − δ + i(β − α)]K
(β − α)(K − E)+ i[(δ − γ )K + (δ + γ )E] ,

K = K(m) and E= E(m) being the complete elliptic
integrals of the first and second kind, respective
Since our initial condition (9) does not contain a
parameters with dimension of length, the parame
β andδ can only depend on the self-similar variab
ξ = ζ/τ . Then Eq. (13) has the solution

(15)ζ/τ = ξ = v(β, δ)

with v(β, δ) given by (14). Separation of real an
imaginary parts yields the formulae

(16)ζ/τ = −4β − 2
(
γ 2 − δ2)/(β − α),

(17)
(α − β)2 + (γ − δ)2

(α − β)2 + γ 2 − δ2
= E(m)

K(m)
,

which together with Eq. (12) determine implicit
dependence ofβ and δ on ξ = ζ/τ . It is convenient
to express this dependence in parametric form

(18)β(m)= α − γ
√

4A(m)− (1+mA(m))2,

(19)δ(m)= γmA(m),

where

(20)A(m)= (2−m)E(m)− 2(1−m)K(m)

m2E(m)
.

Substitution of these expressions into (10), (11) yie
the densityn as a function ofm. Since the spac
coordinateζ defined by Eq. (16) is also a functio
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of m at given momentτ , we arrive at presentation o
dependence ofn on ζ in parametric form. The limit
m → 0 corresponds to a vanishing modulation, a
this edge point moves inside the condensate accor
to the law

(21)ζ− = (−4α + 4
√

2γ
)
τ.

The other edge withm → 1 moves according to th
law

(22)ζ+ = −4ατ,

and corresponds to the bright solitons (or fringes
nonlinear diffraction pattern) at the momentτ . The
whole regionζ− < ζ < ζ+ describes the oscillator
pattern arising due to nonlinear Fresnel diffraction
the BEC with initially sharp boundary atζ = 0.

We have performed numerical simulation of 1D a
3D GP equations with the aim to compare appro
mate Whitham theory with numerical results. The
density distributions calculated numerically from (
and analytically are shown in Fig. 1. We see exc
lent agreement between the theoretical and num
cal predictions of the height of the first soliton ge
erated from initially step-like pulse, but its positio
given by analytical formula is slightly shifted with re
spect to numerical result. This is well-known featu
of asymptotic Whitham approach [11,12] which acc
racy in prediction of location of the oscillatory patte
cannot be much better than one wavelength. Thus
see that the above theory reproduces the numerica
sults quite well for period of timeτ � 2. For much
greater time values some other unstable modes di
ent from one-phase periodic solution (10) can also g
considerable contribution into wave pattern. Nevert
less, the qualitative picture of soliton pattern rema
the same.

For 3D numerical simulation, the GP equation
was transformed to dimensionless form by me
of substitutionsx = a⊥x ′, y = a⊥y ′, z = a⊥z′, t =
2t ′/ω⊥, ψ ′ = (N1/2/a

3/2
⊥ )ψ , so that it takes the form

(23)iψt = −∆ψ + r2ψ − (8πN |as |/a⊥)|ψ|2ψ,
where primes are omitted for convenience of the no
tion and

∫ |ψ|22πr dr dz = 1,r2 = x2+y2. Evolution
of the density distributionρ(z)= ∫ ∞

0 |ψ(r, z)|22πr dr
along the axial direction is shown in Fig. 2 for th
values of the parameters corresponding to the exp
ment [8] (as = −3a0,ω⊥ = 2π×625 Hz,L = 300a⊥)
-

except for the number of atoms which was chose
beN = 5 × 103 in order to satisfy the condition (7
so that|as |n0 = 1.7 × 10−3. We see that diffraction
(soliton) pattern arises after the dimensionless t
t � 400 which corresponds after appropriate sca
transformation toτ � 2 in Fig. 1. The width of soli-
tons in Fig. 2 also agrees with the width predicted
1D analytical theory and numerics. The spatial d
tribution of the condensate density|ψ(r, z)|2 is illus-
trated by Fig. 3. The 3D nonlinear interference p
tern is clearly seen. For greater values of the cond
sate density, when 1D theory does not apply, num
ical simulation demonstrates similar evolution of t
diffraction pattern up to the moment when collap
starts in each separate soliton. Thus, formation of s
tons in the experiment [8] with large initial numb
of atomsN � 105 goes through collapses with lo
of atoms until the remaining atoms can form sta
separate soliton-like condensates. The present th
emphasizes the importance of the initial stage of e
lution with formation of the nonlinear Fresnel diffra
tion pattern.

Formation of soliton trains in BEC confined in
cigar-shaped trap has also been studied numerica
[19,20]. The results of 1D simulation in [19] agre
qualitatively with our results. In numerics of [20
strong losses were introduced to prevent fast colla
of BEC with large number of atoms. Neverthele
formation of soliton trains was also observed.

The above theory is correct for evolution time mu
less than period of oscillations 2π/ωz in the axial
trap. When the axial trap is taken into account, s
tons acquire velocities in axial direction even if initi
phase is equal to zero. The number of solitons p
duced ultimately from some finite initial BEC distrib
ution can be found by means of quasiclassical met
applied to an auxiliary spectral problem associa
with the NLS equation (8) in framework of the in
verse scattering transform method [12,21]. If the i
tial wave function is represented in the formu0(ζ ) =√
n0(ζ )exp(iφ0(ζ )), then the total number of soliton

is equal approximately to

(24)Ns = 1

π

∫ √
n0(ζ )+ v2

0(ζ )

4
dζ − 1

2
,

wherev0(ζ )= ∂φ0(ζ )/∂ζ is the initial velocity distri-
bution of BEC. If there is no initial phase imprinted
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Fig. 1. Density distributions of BEC calculated by numerical solution of 1D GP equation (8) and given by Whitham theory with initial step-like
wave function (9) withγ = −1, α = 0.

Fig. 2. Density distributions of BECρ(z) along axial direction for different moments of time calculated by numerical solution of 3D GP
equation (23) with cylindrical initial distribution.



A.M. Kamchatnov et al. / Physics Letters A 319 (2003) 406–412 411
Fig. 3. Dependence of the density distributions on radial,r , and axial,z, coordinates at timet = 400.
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BEC, then the total number of solitons is given by t
formula

(25)Ns = (√
2|as|/πa⊥

)∫
|Ψ |dz,

which is written in dimensional units and we ha
neglected a “one-half” term in (24).

In experiment, the initial stage is usually obtain
by sudden change of the sign of the scattering len
from positive to negative one, so that initial dens
distribution has, for large enough number of atoms,
Thomas–Fermi form

(26)|Ψ |2 = (3N/4Z)
(
1− z2/Z2),

where Z is the Thomas–Fermi half-length of th
condensate. Then substitution of (26) into (25) give

(27)Ns = √
3N |as |L/(4a⊥),

whereL = 2Z is the total length of the condensa
Up to constant factor, this estimate coincides with o
obtained in [20] by division ofL by the instability
wavelength 1/Kmax. Note that this estimate include
also very small solitons which cannot be observ
in real experiments, so that it must be considered
an upper limit of the number solitons which can
produced from a given initial distribution. The sam
property of this kind of estimate for number of da
solitons has been observed in comparison of analy
theory with numerical simulations in [21]. The axi
potential influences mainly on velocities of solitons,
the above estimate can be applied to the condensa
a cigar-shape trap under condition that inequality
is fulfilled.

In conclusion, we have studied theoretically a
numerically the process of formation of soliton trai
near the sharp edges of the density distribution
BEC. The arising oscillatory regions can be cons
ered as nonlinear Fresnel diffraction fringes of ma
waves.
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