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Chaos in collapsing Bose-condensed gas
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We reinvestigate the dynamics of the grow and collapse of Bose-Einstein condensates in a system of trapped
ultracold atoms with negative scattering lengths, and found a new behavior in the long time scale evolution: the
number of atoms can go far beyond the static stability limit. The condensed state is described by the solution
of the time-dependent nonlinear Schro¨dinger equation, in a model that includes atomic feeding and three-body
dissipation. Our results for the model show that, by changing the feeding parameter and when a substantial
depletion of the ground-state exists, a chaotic behavior is found. We consider a criterion proposed by Deissler
and Kaneko@Phys. Lett. A119, 397 ~1987!# to diagnose spatiotemporal chaos.

PACS number~s!: 03.75.Fi, 05.45.Mt, 32.80.Pj, 05.45.Pq
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It has been shown numerically@1# and by experiments@2#
that Bose-Einstein condensation~BEC! can occur in atomic
traps even with attractive two-body interactions, as in7Li. In
this case, it was observed the occurrence of a critical m
mum number of atoms (Nc) in the ground state level; abov
such limit the condensate collapses under two body att
tion. Recombination losses prevent the condensate to
lapse to a point. Numerical simulations of this process w
considered in Ref.@3#, by studying the time evolution of the
condensed wave function of atoms of7Li @4#. As noticed in
Ref. @4#, even considering the qualitative similar behavior
the theoretical simulation of Ref.@3# and their experimenta
measurements, there is relevant quantitative difference
tween the predictions with respect to the remaining num
of atoms in the condensate. It is also reported in Ref.@4# that
their observations could be ‘‘a first indicator of a compl
dynamics accompanying BEC in a gas with attractive int
actions.’’ This strongly suggests to study the time evolut
of BEC atoms for long periods, through the numerical so
tion of the corresponding time-dependent nonlinear Sch¨-
dinger equation~NLSE!, as given in Ref.@3#. This equation
includes two nonconservative~imaginary! terms: one, linear,
related to the feeding of the condensate from the nonequ
rium thermal cloud, another, nonlinear and dissipative, c
responding to three-body recombination.

It is also well known that systems with complex dynam
can present chaotic behaviors for some appropriate rang
parameters. In particular, we should note that the transi
from a complex dynamics to chaos was previously cons
ered in the time-dependent NLSE by other authors@5,6#. As
shown in Ref.@6#, for a definite set of parameters, sma
errors of the order of roundoff grow rapidly and saturate
values comparable in magnitude to the amplitude of
wave function itself, which lead to serious numerical ins
bilities of the solutions. Deissler and Kaneko, in Ref.@5#,
have also proposed a useful criterion to diagnose spatio
poral chaos in NLSE, which relies on the determination
the time evolution of a function defined by the integral of t
square modulus of the difference between wave functi
with nearby initial conditions. The average slope of th
function, when plotted as a function of time, gives the larg
Lyapunov exponent.
1050-2947/2000/62~3!/033605~4!/$15.00 62 0336
i-

c-
ol-
e

f

e-
r

-
n
-

b-
r-

of
n
-

t
e
-

m-
f

s

t

The main purpose of the present paper is to analyze
model given in Ref.@3#, and the consequences of the corr
sponding parametrization. Actually, it is very relevant
build a realistic model to describe the grow and collapse
the condensate for atomic systems with attractive two-b
interactions, and Ref.@13# gives a very important contribu
tion in this respect. The mean-field approximation was fou
to be a good approximation in the thermodynamical equi
rium, as observed in a quantum Monte Carlo calculation
Ref. @7#; however, the validity of this approximation to de
scribe a physical system can be questionable in a com
dynamics scenario. In the present study, as it will be sho
for certain regime of the nonlinear parameters, the me
field approximation can lead to a chaotic behavior. This i
new fact that should be considered in any improvements
the model.

In the present work, we use the criterions considered
Ref. @5# in order to verify numerically the onset of chaot
behavior of the solution of the time-dependent NLSE, wh
was considered in Ref.@3# for a trapped gas with attractiv
two-body interaction. In Ref.@8#, the complex dynamics ac
companying BEC of7Li atoms, was observed in the tim
evolution of the number of atoms in the condensate. It w
verified the high sensibility of the numerical accuracy w
the change of parameters, such that when a repulsive th
body interaction was considered, the numerical results w
more stable for the condensate@8#. Later on, we verified that
the numerical precision decreases very fast by increasing
modulus of the strength of an attractive three-body inter
tion. This preliminary result lead us to the suspicion of
possible chaotic behavior of the time-dependent NLSE w
trapped atoms. In the next, we briefly describe the NLSE
trapped atoms considered in this letter, followed by the m
results and conclusions.

We start our dynamical study by considering the NLS
corresponding to the one given in Ref.@3# for the trapped
atoms with attractive two-body interaction. Two noncons
vative terms were added to take into account, respectiv
the decrease of the density due to three-body recombina
~parametrized byj), and the feeding of the condensate fro
the nonequilibrium thermal cloud~parametrized byg). The
NLSE considered in this work is the mean-field approxim
©2000 The American Physical Society05-1
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tion to the quantum many-body problem of a dilute gas
which the average interparticle distance is much larger t
the absolute value of the scattering length. Also, the valid
of such approximation is limited to wave-lengths mu
larger than the average interparticle distance.

In dimensionless units, as given in Eq.~2! of Ref. @8#, the
s-wave radial NLSE can be written as

i
]F

dt
5F2

d2

dx2
1

1

4
x22

uFu2

x2
22i j

uFu4

x4
1 i

g

2GF, ~1!

where x is related to the physical radiusrW by x

[A2mv/\urWu, t[vt is the dimensionless time variable
with v the frequency of the harmonic trap interaction.j is
the dissipation parameter, originated from three-body co
sions, andg is a parameter related to the feeding of ato
from the thermal cloud~Ref. @3# gives an estimative for suc
parameters!. F[F(x,t) is related to the physical wav
function C(rW,t) by F(x,t)[A8pN(t)uauurWuC(rW,t), where
N(t) is the number of atoms anda is the two-body scattering
length ~here, assumed to be negative!. Using these defini-
tions,C(rW,t) is normalized to one andF(x,t) is normalized
to the reduced number of atomsn(t)[2N(t)uauA2mv/\:

E
0

`

dxuF~x,t!u25n~t!. ~2!

In order to obtain numerical solutions of Eq.~1!, we ap-
plied the semi-implicit Crank-Nicolson~CN! algorithm as
described, for instance, in Ref.@9# for nonlinear problems.
We consider the same parameters given in Ref.@3# (g50.1
and j50.001) and use the same initial condition they us
for the number of atoms in the condensate@N(t)/Nc
5n(t)/nc50.75#. We should remark that, for the7Li con-
densed gas, the above dissipation parameterj is about two to

FIG. 1. Number of condensed atoms as a function of time
vt<1000. The parameters areg50.1 andj50.001. A doubling
pattern is observed forvt,50, as shown in the inset. All quantitie
shown are dimensionless.
03360
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three orders of magnitude larger than the experimental
@10#. However, for our general study of Eq.~1! we use the
parameters given in Ref.@3#, in the perspective of application
of the model to a more general atomic systems. We sho
note that, in principle, as discussed in Ref.@11#, it is possible
to alter experimentally the two-body interaction by means
light or induced magnetic field, and consequently affect
the three-body recombination rate. In respect to the feed
parameterg, we allow a range of values up to the value us
in Ref. @3#. The chaotic behavior of Eq.~1! is very sensible
to the increasing of such parameter.

In Fig. 1 we show the evolution of the number of atom
for vt<1000~about 20 times larger than the maximum tim
considered in Fig. 1 of Ref.@3#!. As already explained in
Ref. @3#, some dynamical collapses occur with frequen
;v. Nevertheless a more careful analysis of such dynam
collapses show that the number of small peaks begins
double after each strong collapse, in a kind of fractal patt
~see inset of Fig. 1!. The doubling pattern observed in Fig.
is also revealed by the time evolution of the central dens
which is given byrc(t)[NuC(0,t)u2, in Fig. 2. The ob-
served strong fluctuations in the density increase for lar
times. These results support a conjecture that the system
doubling the peaks indefinitely, starts to excite a whole sp
trum of frequencies.

One can also observe a striking feature in Fig. 1, that
number of atoms described by the NLSE go far beyond
static critical limit, in the long time scale.1 In a dynamical
situation, one should note that the number of atoms can g
beyondNc , which is not possible in the static case.Nc refers
to the critical limit for the number of atoms in the groun
state; however, the excited states allow more atoms than

1This behavior is not observed in the numerical solutions of
quantum Boltzmann depicted in Fig. 1 of Ref.@4#

r FIG. 2. The central density,rc(t)[NuC(0,t)u2, in dimension-
less units, withr0 defined byr0[(1/4pa)(mv/\), is represented
as a function ofvt, for vt,100.
5-2
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ground state, as shown in Ref.@12#. So, the number of atom
higher than the static critical limit~after some period of time!
can be interpreted as if not all the particles are in the gro
state, but that the excited states are also becoming popul
After a long enough period of time (vt.100), one can ob-
serve that the number of atoms remains higher thanNc; a
result which is consistent with the interpretation that a la
fraction of the particles are populating the first radial exci
state. Within the same interpretation, other excited states
be populated in a longer enough period of time. As a con
quence, in the long time scale, the picture of a conden
with atoms in the ground state, assumed to be describe
Eq. ~1!, is no longer valid, as the feeding process is popu
ing the excited states. This scenario is also confirmed by
large values of the mean-square radius attained by the w
function, as shown in Fig. 3.

The present results show possible limitations of the mo
given in @3#, when trying to describe BEC atoms with attra
tive two-body interactions. As verified in Fig. 3, the grow
above the critical value is strongly dependent on the nonc
servative parameters. One should also observe that in
@3# they have considered the case of a decreasing time
pendentg, that shows saturation just after the beginning
the collapses. Effectively, this is a way one can try for
better description of the experimental data, together wit
more general study of the parameters in the nonlinear te
of the NLSE.

One particular interesting observable, to further anal
the dynamical behavior of Eq. 1, is the mean-square rad
We define this observable in dimensionless units byX(t)
[A^x2(t)&. In Fig. 3, we plot (d/dt)X(t) as a function of
X(t), for a set of values of the parameterg (g
50.01,0.02,0.05,0.1). In all cases, the wave-functions w
evoluted up tovt51000 and the strength of the three-bo
dissipative interaction is kept fixed atj50.001. In Fig. 3, we

FIG. 3. Phase-space plots, characterized by different value
the feeding parameterg ~given inside the plots!, for the mean-
square radiusX(t)[A^x2(t)&, in dimensionless units. In all the
cases,j equal to 0.001 and the wave functions were evolved u
vt51000.
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observe that a complex dynamical structure starts to ap
as the value of the parameterg increases. Fort50,
A^x2(t)& is close to 1.52 and (d/dt)A^x2(t)& is zero, in all
the cases. Initially, forg50.01, the radius decreases to
center near 1.34 with zero derivative, then it starts to os
late with larger radius, but keeping the center fixed. A sim
lar behavior is found forg,0.01. For larger values ofg, the
center of the oscillation inX grows up to the point it reache
an attractor at very large radius. In case ofg50.1, for ex-
ample, the plot clearly resembles a chaotic behavior wit
strange attractor, which is aroundX(t);23. We have ob-
served a fast transition in the pattern of the trajectory, wh
comparing the results obtained forg50.01 andg50.012, in
a similar plot. This gives an indication of the existence o
critical range of values for the parameterg for the transition
from order to chaos. In this model, the signature of the on
of chaos is a noncontinuous increasing of the radius up
very large values, compared to some typical ground-s
value, as we found forg.0.02. The chaotic behavior of th
system, for this set of parameters, will be demonstra
through the calculation of the largest Lyapunov expone
which will be defined in the following.

We should note that we kept fixed the dissipative term
Eq. ~1!; however, the indication of transition to chaos c
also be found by changingj with g fixed. In other words, by
keeping fixedg to a certain nonzero value, a similar behavi
is reached as we decrease the value of the parameterj. Our
aim in the next is to determine the existence of spatiotem
ral chaos in the time evolution of trapped atoms described
Eq. ~1!, by considering a general procedure for nonline
partial differential equations.

In @5#, it was studied the complex quintic Ginzburg
Landau equation and showed that, for an appropriate ch
of the parameters the system could present a chaotic be
ior. In order to characterize the chaotic behavior, for a s
tiotemporal equation, the following functionz was defined
@5#:

z~t!5S E
0

L

udF~x,t!u2dxD 1/2

. ~3!

The average slope of this function plotted as a function
time, gives the largest Lyapunov exponent@5#. The chaotic
behavior is characterized by a positive slope. The calcula
of dF as described in Ref.@5# can also be related to th
excitation of collective modes by an infinitesimal perturb
tion of the wave function. The onset of the chaotic behav
can be interpreted as the increase of the magnitude of
collective excitations, or alternatively, by the creation
many quasiparticle states, with the corresponding deple
of the ground-state occupation@13,14#. In this sense, the
mean-field approximation should be valid for times in whi
the wavelength is much larger than the average interpar
distance.

The formal main difference between the complex quin
Ginzburg-Landau equation and the Eq.~1! is the presence o
the trap in the latter. The similarity of these equations led
to consider the criterion used in Ref.@5#, applying the Eq.~3!
to the wave functions obtained from Eq.~1!. We are mainly
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interested in studying the time evolution of the conden
wave function for a negative two-atom scattering leng
through the investigation of the numerical accuracy of
results for certain parameters used. By considering a gen
example, we keep fixed the value of the three-body diss
tive parameterj (j50.001, as in Ref.@3#!, and study a range
of values for the feeding parameter.

In order to calculate Eq.~3!, we use the same initial wav
function F(x,t) as in Ref.@3#, i.e., with initial number of
atoms equal to 0.75Nc . This initial wave function was also
evoluted with an added small random perturbationdF(x,0)
;10214. The difference between the wave function and

FIG. 4. Logarithmic representation of the separation betw
two nearby states, as given by Eq.~3!, for several values of the
parameterg ~shown near the corresponding plot!. j is maintained
fixed to 0.001 andt[vt. All quantities are given in dimensionles
units.
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perturbed wave function gives the separation of the traje
ries dF(x,t), which is used to obtain our results for Eq.~3!
shown in Fig. 4. As one can observe, there is an appro
mately exponential increase inz as the time grows for all
cases presented withg.0.01, such that we can draw a co
clusion about the chaotic behavior of Eq.~1!. This is better
characterized forg50.1. This confirms the suspicion raise
when analyzing the results obtained in Figs. 1–3, as one
clearly obtain from such results the values of the feed
parameter for the system to become chaotic.

In conclusion, the NLSE used for the description of t
dynamics of the Bose condensed wave function in ato
traps with attractive interactions in@3#, for certain class of
parameters~as, for example, the parameters considered
@3#, j50.001 andg50.1), is chaotic. The chaotic behavio
of Eq. ~1! starts to disappear as one decreasesg or increases
j. In our understanding, this is an important result of t
formalism considered for the description of Bose-Einst
condensed states. The onset of chaos is accompanied
noncontinuous increasing of the radius up to very large v
ues, compared to some typical ground-state value. As exc
states start to be populated, the feeding process describe
the equation is not limited to the ground state, and a cha
regime is observed in the model under consideration. In
sense, the validity of the mean-field approximation to d
scribe the physical system is questionable in the long-t
domain. Further investigations are in progress.
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