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Critical numbers of attractive Bose-Einstein condensed atoms in asymmetric traps
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The recent Bose-Einstein condensation of ultracold atoms with attractive interactions led us to consider the
possibility of probing the stability of its ground state in arbitrary three-dimensional harmonic traps. We
performed a quantitative analysis of the critical number of atoms through a full numerical solution of the
mean-field Gross-Pitaevskii equation. Characteristic limits are obtained for reductions from three to two and
one dimensions, in perfect cylindrical symmetries as well as in deformed ones.
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The predicted collapsing behavior of condensed syst
with attractive two-body atomic interactions@1#, first ob-
served in experiments with7Li @2#, was recently tested in
experiments with85Rb @3#. In the experiments described i
Ref. @3#, and more recently in@4#, by means of Feshbac
resonance techniques@5#, the two-body interaction was tune
from positive to negative values. In addition to the fact th
the experimental results qualitatively agree with the theo
and confirm results of previous variational treatme
@6–11#, they also show a consistent quantitative deviation
about 20% from the mean-field predicted critical numb
of atoms,Nc @1#. The asymmetry of the trap was shown
Ref. @12# to be responsible for about 4% of the observ
deviation.

In this respect, it is relevant to obtain precise and relia
numerical results for the mean-field calculations, in order
probe their consistency and possible limitations. The ac
experimental atomic traps are in general harmonic and n
symmetric. Extreme asymmetric traps have been rece
employed in experimental investigations with condensa
constrained to quasi-one~1D! @4,13# or quasi-two dimen-
sions~2D! @14#, exploring the theoretical analysis consider
by several authors@15–17,7,18,19#. A nonsymmetric three-
dimensional~3D! trap is reported in Ref.@20#, with the fre-
quencies given by 2v15A2v25v352p333 Hz.

Considering the general nonsymmetric traps that h
been employed, the accuracy of the comparison between
periments and the results of mean-field approximation re
on precise calculations using arbitrary three-dimensio
traps. In the case of an attractive two-body interaction,
maximum critical number of atoms for a stable system is o
of the interesting observables to study, which is also rela
to the collapse of the wave function of the system. In th
cases, where the two-body scattering length is negative
the kinetic energy cannot be considered to be a small pe
bation, the Gross-Pitaevskii mean-field approximation
been applied, giving reliable results in explaining the obs
vations in stable~noncollapsing! conditions@21#.

Before presenting the mean-field equation for an arbitr
3D case, let us analyze qualitatively the collapse phen
enon for asymmetric traps. The interaction energy is prop
tional to the square of the density, varying with the negat
1050-2947/2002/66~4!/043619~5!/$20.00 66 0436
s

t
y,
s
f
r

e
o
al
n-
tly
s

e
x-
s

al
e
e
d
e
nd
r-
s
r-

y
-

r-
e

two-body scattering length. For traps with cylindrical~or al-
most cylindrical! shapes, there are two quite different situ
tions: one pancakelike, with the frequencies in the transve
directions being smaller than the frequency in the longitu
nal direction; the other, cigarlike~quasi-1D!, with the fre-
quency in the longitudinal direction smaller than the freque
cies in the perpendicular directions. For a true 1D syste
one does not expect the collapse of the system with incr
ing number of atoms@1,22#. However, it happens that a re
alistic 1D limit is not a true 1D system, with the density
particles still increasing due to the strong restoring forces
the perpendicular directions@16#. The relevance of quasi-1D
traps in controlling the condensate motion has been poin
out in Ref. @16#. But, as we are going to see, the critic
number of particles in the quasi-1D limit is smaller than t
critical number of particles in the 2D limit, if we just ex
change the longitudinal and perpendicular frequencies.
physical reason for that behavior is the increase of the a
age density in the cigarlike configuration relative to the pa
cake like one for the same number of atoms, implying
strong collapsing force in the first case, and consequently
cigarlike geometry is a more unstable configuration co
pared to the pancake like one. This conclusion is in appa
contradiction with the remark made in Sec. IV of Ref.@16#,
saying that, considering the better collapse-avoiding prop
ties, ‘‘the cigar-shaped trap is the optimal one.’’ We are go
to discuss this problem in detail and clarify this issue.

In the following, we revise the Gross-Pitaevskii~GP! for-
malism, for an atomic system with arbitrary nonspherica
symmetric harmonic trap. The Bose-Einstein condensate
zero temperature, in the GP mean-field approximation
given by

i\
]
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2r 3
2!

1
4p\2a

m
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~1!

wherer 5Ar 1
21r 2

21r 3
2, m is the mass of the atom,m is the

chemical potential, and the wave functionC[C(rW,t)
5C(rW,0)exp(2 imt/\) is normalized to the number of par
©2002 The American Physical Society19-1
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A. GAMMAL, LAURO TOMIO, AND T. FREDERICO PHYSICAL REVIEW A66, 043619 ~2002!
ticles N. The arbitrary geometry of the trap is parametriz
by three different frequenciesv1 , v2, andv3. For conve-
nience, it is appropriate to define the frequencies accord
to their magnitude, such that in the present work we assu
v1<v2<v3.

Here we will be concerned only with systems that ha
attractive two-body interactions@a52uau, in Eq. ~1!#. In
this case, it was first shown numerically in Ref.@1# that the
system becomes unstable if a maximum critical numbe
atoms,Nc , is achieved. We present precise results for a c
cal parameterk, directly related to the maximum number o
atoms, in a general nonsymmetric configuration of the tr

By rewriting Eq.~1! in dimensionless units,

i
]f

]t
5F1

2 (
i

S 2
]2

]xi
2

1
v i

2xi
2

v2 D 2ufu2Gf, ~2!

wheret[vt, r i[ l 0xi , andf[ l 0A4puauC, with

E d3xufu254p
Nuau

l 0
. ~3!

The oscillator lengthl 0 is defined in terms ofv, which is
taken as the geometrical mean value of the frequencies:

l 0[A \

mv
, with v[~v1v2v3!1/3. ~4!

For strongly nonsymmetric cases, particularly when comp
ing the two extreme cylindrical-shape geometriesv1;v2
!v3 ~pancake shape! andv1!v2;v3 ~cigar shape!, a no-
ticeable difference is expected between the correspon
critical numbers of particles.

We define a parameterk, related to the critical number o
trapped atoms,Nc , as in Ref.@3#:

k5
Ncuau

l 0
. ~5!

This parameter is a maximum critical limit for stable sol
tions of the dimensionless Eq.~2!. It depends only on the
ratio of the frequencies of the trap. Within the precisi
given in Ref.@23#, ks50.5746, whereks is k for spherically
symmetric traps. In Ref.@24#, the critical number was calcu
lated for a nonsymmetrical geometry, but in a case where
frequency ratio is not too far from unity (v1 /v'50.72),
giving a result for the number of atoms almost equal to
spherical one.

In experiments with 85Rb @3#, an almost cylindrical
‘‘cigar-type’’ symmetry was considered, with the three fr
quencies given by 17.47 Hz, 17.24 Hz and 6.80 Hz. With t
symmetry, the authors have obtainedk50.45960.012 ~sta-
tistical! 60.054 ~systematic!. In Ref. @12#, assuming the
cylindrical symmetry v152p36.80 Hz,v25v352p
317.35 Hz, k50.55 was obtained, a value about 4% low
thanks .

In our numerical approach, the calculation is perform
by evolving the nonlinear equation~2! through imaginary
time @24#. The evolution is performed for an initial value o
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the normalization~3! until the wave function relaxes to th
ground state. The wave function is renormalized after e
time step. The process is repeated systematically for la
values of the normalization, until a critical limit is reache
At this critical limit the ground state becomes unstable. T
time evolution is done with a semi-implicit second ord
finite difference algorithm. An alternating scheme is used
thex1 andx2 directions, with a split step in thex3 direction.
This procedure is done only forxi>0, taking advantage o
the reflection symmetry of the ground state. We consi
1003 grid points and a time step equal toDt50.001, verify-
ing that the algorithm is stable for long time evolution. A
we increment the normalization, approaching the criti
limit, the wave function starts to shrink. So, in order to ma
tain the precision, we introduce an automatic reduction of
grid sizesDx1 , Dx2, and Dx3, gauged by the respectiv
root-mean-square radius in each direction.

In Fig. 1 we show our main results for the critical consta
k, covering many different geometries. We plotk/ks ~and k
on the right-handy axis! as a function ofl, which is defined
by

l[
v1v3

v2
2

5S v

v2
D 3

with v3>v2>v1 . ~6!

We show several curves in which we kept constant
ratio v3 /v1 ~solid lines!. The values ofv3 /v1 are indicated
inside the figure, just below the corresponding plot. T
dashed and dotted lines correspond to cylindrical (h51) and
deformed cylindrical (h51.414) symmetries for the trap
whereh is the deformation parameter, as will be explaine
In the left-hand side of these plots we havev35hv2@v1
~cigar shape!; and, in the right-hand sidev3@v25hv1
~pancake shape!. k can be determined for any symmetry th
was not shown, by interpolating the results already giv
The results for the complete nonsymmetric case are con
tent with the previously obtained values in cylindrical sym

FIG. 1. Critical constantk5Ncuau(mv/\)1/2, calculated for an
arbitrary nonsymmetric trap,v[(v3v2v1)1/3, with v3>v2>v1.
The ratiov3 /v1 is shown below each corresponding curve~solid
lines, with full circles!. The dashed and dotted lines correspond
cylindrical (h51) and deformed cylindrical (h5A2) symmetries,
respectively.
9-2
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CRITICAL NUMBERS OF ATTRACTIVE BOSE- . . . PHYSICAL REVIEW A 66, 043619 ~2002!
metry @12#. The maximum value for the critical numberk is
obtained for the spherically symmetric case (v15v25v3).

As already observed, Fig. 1 includes previous calculati
in the limit of the quasi-1D~cigar-shape! and quasi-2D
~pancake-shape! symmetries~see dashed line!. However, for
the sake of comparison with previous results obtained
several authors, we also present in Fig. 2 the cylindr
pancake-type (v'5v15v2!v3) and cigar-type (v'5v3
5v2@v1) results. In Fig. 2, for cylindrical geometries, w
compare our exact results fork35Ncuau(mv3 /\)1/2 as a
function of l with the corresponding variational ones
Refs. @7,15#. The variational results~dashed lines! are con-
sistently a bit higher than the exact ones. Forl→0 (v1
!v25v35v'), the exact and variational results for th
critical constant areNcuau(mv' /\)1/250.676 and 0.776, re
spectively. They are consistent with the quasi-1D lim
given in Refs.@15,16#. When v3@v25v1, the variational
2D limit Ap/2 of Ref.@7# is comparable with our exact resu
(k350.931Ap/2). In this case, the quasi-2D limit coincide
with the true 2D limit@25,19,22,26#.

Considering the present analysis, we observe thatNc in a
cigar-like ~quasi-1D! trap is smaller thanNc in a pancakelike
~quasi-2D! trap. And, as we deform a cigarlike trap,Nc also
increases. We need to clarify this matter, which is the sub
of the next four paragraphs, because this result appare
contradicts a remark made in Ref.@16#, saying that ‘‘the
cigar-shaped trap is the optimal one.’’

As shown in Ref.@12# and also in the present calculatio
in a deformed cylindrical symmetry, the cigar shape~with
one of the frequencies smaller than the other two! is more
favorable to obtain a larger value ofk than the pancake-shap
symmetry~with one of the frequencies larger than the oth
two!. See, for example, in Fig. 1, the two extreme points
the curve withv3 /v15100. This results from the definition
of k, Eq. ~5!, in terms of the average oscillator lengthl 0.

FIG. 2. Exact results ofk3[Ncuau(mv3 /\)1/2 for cylindrical
traps~solid lines! are compared with corresponding variational a
proaches~dashed lines!. In the 2D pancake limit,v'5v25v1 and
k35kl1/3; and, in the quasi-1D cigar limit,v'5v25v3 and k3

5kl21/6. Note thatl5v3 /v1 when v25v1; and v1 /v3 when
v25v3.
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However, the maximum value ofk can only be directly re-
lated to the maximum value ofNc whenv is kept fixed. And,
with l 0 fixed, Nc is maximized forl51, corresponding to
the spherically symmetric case (k5ks). If we fix l 0 and
v3 /v1 , Nc is maximized for a deformed cylindrical sym
metry with l,1, as one can see from Fig. 1.

Considering exact cylindrical traps, by exchanging t
frequencies~which, obviously, does not keep constant t
average frequencyv), the following ratio that was obtained
in Ref. @12# is valid:

R~l![
Nc~l!

Nc~1/l!
5l1/6

k~l!

k~1/l!
. ~7!

This result favors the pancakelike symmetry (l5v3 /v1
5v3 /v'.1), to obtain a larger value forNc . Consider, for
example, a cylindrical pancake-type trap withl5100, in
comparison with a cigar-type trap withl51/100. We notice
that, in this case,R(l5100)'1.6, implying that with such
pancakelike trap (v35100v') one can obtain about 60%
more particles than with the corresponding cigarlike tr
(v35v'5100v1). Let us consider the recent experime
with a quasi-1D~cigarlike! trap used in the formation an
propagation of matter wave solitons, with7Li @4#. In this
case, axial and radial frequencies, respectively, equal to
Hz and ;625 Hz were used@29#; or v'5v352p
3625 Hz, v152p33.2 Hz, andl5v1 /v350.00513. So,
as shown in Fig. 2, we are essentially in the limitl50,
which gives Nc

1 Duau/A\/(mv')'0.675. Considering tha
the scattering length was tuned toa523a0 (a0 is the Bohr
radius!, the maximum number of atoms in this quasi-1D tr
is Nc

1D'6400. If we exchange the radial and axial freque
cies in this experiment, going from a cigarlike to a panca
like trap, v'52p33.2 Hz, v352p3625 Hz, and l
5v3 /v'5195.3. In this case,Nc

2 Duau/A\/(mv3)'1.12.
So the critical number in the quasi-2D limit is about 66
larger than the corresponding number of atoms in
quasi-1D limit, andNc

2 D'10 600.
The best way to distribute the frequencies to obtain

maximum number of atoms was first considered in Ref.@6#,
reaching the conclusion that the best is a spherical trap
achieving maximum density.~In an almost spherical trap au
thors obtained from;600 to;1300 atoms, in overall agree
ment with theoretical predictions@2#.! The point is that to say
what is the best configuration for the maximum number
atoms we must also say what is theconstraint on the fre-
quencies. If the constraint is to keep fixed the prod
v1v2v3 then the maximum number will be given for th
maximumk @as shown in Eq.~5!#, which happens in spheri
cal symmetry, in agreement with Ref.@6#. But, if two fre-
quencies are equal and givena priori, then the best configu
ration to increaseNc is to make the third frequency equal t
zero, in agreement with Ref.@16#. However, if only one fre-
quency is kept fixed, than the extreme pancake shape
contain more atoms, by making the remaining frequencies
to zero.

As a final remark about the maximization ofNc , we note
that, for attractive two-body interactions, the frequencies

-
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all three directions cannot be initially zero. In the experime
tal process of condensation, the atoms must be trapped w
going from higher temperatureT to the critical oneTc . By
making the frequencies too small,Tc will be smaller and the
condensation harder to achieve@as shown in Ref.@27#, Tc
;\v(Ntot)

1/3, whereNtot is the total number of particles in
the trap#. Once the condensate is achieved, we can switch
some of the frequencies, and obtain a finite maximum va
for Nc , as observed in Fig. 2 forT50. In the present work
we are concerned with the case of zero temperature.
effects of temperature on the collapse and onNc for the
spherically symmetric case have been discussed, for
ample, in Ref.@28#. Nc is maximized by makingv as small
as possible. However, a discontinuity exists when taking
the three frequencies exactly zero. Without a trap a colla
will occur for any number of particles.

We must stress that Fig. 1 also includes nonsymme
cigar-type geometriesv35hv2@v1 and elliptical pancake-
type geometriesv3@v25hv1, whereh is the eccentricity
of the ellipses. In particular, the dotted line in Fig. 1 gives t
critical values ofk for h5A2. Thus, one could replot, as i
Fig. 2, a series of curves whose limiting cases describe n
symmetric cigar- or pancakelike symmetries. In the 1D a
2D limits, one can obtain critical quasi-1D and quasi-2
numbers, for eachh.

One can also obtain an interesting result for asymme
cigar-shape traps, wherev35hv2@v1, following the ap-
proach given in Sec. II of Ref.@16#. The assumption made i
@16# to reduce the 3D equation to a 1D equation can
justified in the limit when the forces in the transverse dire
tions are the main forces responsible for the trapping po
tial. So, in the limitv1→0, we are able to generalize th
solitonic 1D equation for a cigar-shaped trap, deformed b
given ratioh5v3 /v2 between the transverse direction fr
quencies. In this case,h>1 cannot be arbitrarily larger
Also, by a scaling procedure applied to the equation for d
ferent values ofh, using our previous exact result, we ha

NcuauS mAv2v3

\ D 1/2

5
Ncuau

h1/4
Amv3

\
50.676. ~8!

This generalizes the cigar-shape quasi-1D results of@16#
~with h such that we still havev2@v1). The 1D solid line
given in Fig. 2 is also applied to deformed cigar-shaped sy
metries if we replacek3 by k3h21/4 on they axis. This result
may be relevant for asymmetric waveguide propagation
one can deform the cigar-type symmetry and control the
lapsing condition. From Eq.~8! we observe that the maxi
mum critical numberNc will increase when the cigarlike
symmetry is deformed by a factor proportional
(v3 /v2)1/4.

Now, let us see the effect of deformation in the sa
example of the cigar-shaped geometry used in Ref.@4#, with
7Li gas. We use the same value ofa523a0, with v3
52p3625 s21, and takev25v3 /h. As given in Eq.~8!,
we go fromNc56392 (h51) to Nc56970 (h5A2) or Nc
57601 (h52). This means an increase of;9% whenh
5A2 and;19% whenh52. Whenh@1, the approxima-
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tion considered in the wave-function separation, as given
@16#, is not valid. In this case we reach the other deform
pancakelike symmetry, wherev3@v2;v1. However, in the
pancake geometry, the effect of deformation inNc is negli-
gible. Comparing the quasipancakelike geometry with
quasicigarlike geometry shows that the numberNc in the
cigarlike geometry is much more sensitive to deformation

We have also studied the behavior of the root-me
square radius for the casev35A2v252v1. We verified
that, as the system approaches the critical point~or collapse!,
the wave function tends to be more ‘‘spherical,’’ confirmin
an earlier conclusion made with a Gaussian variational
proximation@30#. In Fig. 3, we show the corresponding re
sults, for the three components of the mean-square ra
^r i

2&5 l 0
2^xi

2& ( i 51,2,3). As shown, whenN50, we have
^r 1

2&/^r 2
2&5^r 2

2&/^r 3
2&5A2; and whenN'Nc this ratio is

drastically reduced.
In summary, we have calculated systematically the criti

number of particles, in systems that have negative two-b
interactions, for traps with arbitrary geometries. The ma
mum critical number of particles,Nc , can be derived from
the given value of the parameterk, given in Eq.~5!, once one
has the scattering length, the mass of the atomic system,
the frequencies of the trap. The results are shown in Fig
and 2. The value ofk, for any symmetry not explicitly given
can be easily derived from Fig. 1 by interpolation. It is al
pointed out that the results shown in Fig. 2, in the 1D cig
like case, can be extended for slightly deformed cylindri
symmetries, by replacing they axis labelk3 by k3h21/4.

Our main results in the present work are as follows.~i!
The maximum number of particlesNc for arbitrary 3D trap
geometries is given through the results shown in Fig. 1.~ii !
The optimal trap configuration, to avoid collapse with ma
mum Nc , is found to be strongly dependent on the co
straints of the frequencies of the trap. If we initially fix on
of the frequencies, the best configuration of the trap is p
cakelike, with the other two frequencies going to ze
Analogously, if we initially fix two equal frequencies, th

FIG. 3. The three componentsi 51,2,3 of the mean-square ra
dius^xi

2&5^r i
2&/ l 0

2 are shown in terms of the dimensionlessNuau/ l 0,
for the case thatv35A2v, v25v, andv15v/A2.
9-4
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best configuration of the trap is cigarlike, with the third fr
quency close to zero. If we initially fix two different frequen
cies and try to vary the third frequency between the fix
ones, the best configuration is again pancakelike. We s
thatNc is much more sensitive to deformations of the trap
a cigarlike geometry than in a pancakelike geometry. Fina
for small deformationsh of the cigarlike traps, whereh
>1, releasing the longitudinal direction, the solitonic so
tions obtained in Ref.@16# will be rescaled by the deforma
s,

et
,

G

en

t,

,

04361
d
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-

tion. Nc will be rescaled by a factor ofh1/4, generalizing the
findings of Ref.@16#.
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