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Critical numbers of attractive Bose-Einstein condensed atoms in asymmetric traps
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The recent Bose-Einstein condensation of ultracold atoms with attractive interactions led us to consider the
possibility of probing the stability of its ground state in arbitrary three-dimensional harmonic traps. We
performed a quantitative analysis of the critical number of atoms through a full numerical solution of the
mean-field Gross-Pitaevskii equation. Characteristic limits are obtained for reductions from three to two and
one dimensions, in perfect cylindrical symmetries as well as in deformed ones.
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The predicted collapsing behavior of condensed systemisvo-body scattering length. For traps with cylindri¢at al-
with attractive two-body atomic interactiorfd], first ob-  most cylindrical shapes, there are two quite different situa-
served in experiments witALi [2], was recently tested in tipns:'one papcakelike, with the frequencies !n the transverse
experiments with®Rb [3]. In the experiments described in directions being smaller than the frequency in the longitudi-
Ref. [3], and more recently ifi4], by means of Feshbach Nal direction; the other, cigarlikequasi-10, with the fre-
resonance techniqués), the two-body interaction was tuned quency in the longitudinal direction smaller than the frequen-

f ive t r | In addition to the fact th tcies in the perpendicular directions. For a true 1D system,
rom positive to negative vaiues. in addition to the 1act thaly,e oes not expect the collapse of the system with increas-

the experi_mental results qualita_ltively agree with the theorying number of atom§1,22]. However, it happens that a re-
and confirm results of previous variational treatmentsyjistic 1D limit is not a true 1D system, with the density of
[6-11], they also show a consistent quantitative deviation ofparticles still increasing due to the strong restoring forces in
about 20% from the mean-field predicted critical numberthe perpendicular directiof46]. The relevance of quasi-1D
of atoms,N, [1]. The asymmetry of the trap was shown in traps in controlling the condensate motion has been pointed
Ref. [12] to be responsible for about 4% of the observedout in Ref.[16]. But, as we are going to see, the critical
deviation. number of particles in the quasi-1D limit is smaller than the
In this respect, it is relevant to obtain precise and reliablesritical number of particles in the 2D limit, if we just ex-
numerical results for the mean-field calculations, in order tachange the longitudinal and perpendicular frequencies. The
probe their consistency and possible limitations. The actugbhysical reason for that behavior is the increase of the aver-
experimental atomic traps are in general harmonic and norage density in the cigarlike configuration relative to the pan-
symmetric. Extreme asymmetric traps have been recentlgake like one for the same number of atoms, implying a
employed in experimental investigations with condensatestrong collapsing force in the first case, and consequently the
constrained to quasi-onélD) [4,13] or quasi-two dimen- cigarlike geometry is a more unstable configuration com-
sions(2D) [14], exploring the theoretical analysis consideredpared to the pancake like one. This conclusion is in apparent
by several author§15-17,7,18,19 A nonsymmetric three- contradiction with the remark made in Sec. IV of REf6],
dimensional(3D) trap is reported in Ref.20], with the fre-  saying that, considering the better collapse-avoiding proper-
quencies given by @;=\2w,=w3=27X33 Hz. ties, “the cigar-shaped trap is the optimal one.” We are going
Considering the general nonsymmetric traps that havéo discuss this problem in detail and clarify this issue.
been employed, the accuracy of the comparison between ex- In the following, we revise the Gross-Pitaevsi@p) for-
periments and the results of mean-field approximation relie§1alism, for an atomic system with arbitrary nonspherically
on precise calculations using arbitrary three-dimensionapymmetric harmonic trap. The Bose-Einstein condensate, at
traps. In the case of an attractive two-body interaction, th&ero temperature, in the GP mean-field approximation is
maximum critical number of atoms for a stable system is ond@iven by
of the interesting observables to study, which is also related 9 . 52 m
to the collapse of the wave function of the system. In these i% —t‘lf(r,t)=[— ﬁV2+§(wirf+ wirs+ wirs
cases, where the two-body scattering length is negative and
the kinetic energy cannot be considered to be a small pertur- 23
bation, the Gross-Pitaevskii mean-field approximation has +
been applied, giving reliable results in explaining the obser-
vations in stablgnoncollapsing conditions[21]. (1)
Before presenting the mean-field equation for an arbitrar o> . .
3D case, IIJet us anglyze qualitativelyqthe collapse phenomxf\’herer: Fi+ra+rs, mis the mass of the atorp, |s€the
enon for asymmetric traps. The interaction energy is proporchemical potential, and the wave functioir = (r,t)
tional to the square of the density, varying with the negative=W (r,0)exp(—iut/#) is normalized to the number of par-

- |~P<F,t>|2}\lf(rit>=w<rit>,
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ticles N. The arbitrary geometry of the trap is parametrized 10
by three different frequencies;, w,, and w;. For conve- .
nience, it is appropriate to define the frequencies according 09 t
to their magnitude, such that in the present work we assume
w1$ w2$ 3. 08 :

Here we will be concerned only with systems that have [
attractive two-body interactionga=—|al, in Eq. (1)]. In Kk o7 |
this case, it was first shown numerically in REf] that the :
system becomes unstable if a maximum critical number of o6 |
atoms,N., is achieved. We present precise results for a criti- ;

cal parametek, directly related to the maximum number of 05 L
atoms, in a general nonsymmetric configuration of the trap. :
By rewriting Eqg.(1) in dimensionless units, 04 L
0.01 01 1, 10 100
d¢ |1 P 0 , A=(le,)
97 |2 Z ax? * w2 |¢I%|¢. @ FIG. 1. Critical constank=N_|a|(mw/#)?, calculated for an
arbitrary nonsymmetric trapy=(wsw,w;)*%, With w3=w,=w,.
wherer=wt, r;=lyx;, andp=Iy\4x|a| V¥, with The ratiowz/w; is shown below each corresponding cuxgelid
lines, with full circleg. The dashed and dotted lines correspond to
sl o N|a| cylindrical (=1) and deformed cylindricalf= 2) symmetries,
f d°x| ¢ :47TT- (3 respectively.

The oscillator lengtH , is defined in terms ofo, which is  the normalization3) until the wave function relaxes to the
taken as the geometrical mean value of the frequencies: ground state. The wave function is renormalized after each
time step. The process is repeated systematically for larger
B h . B s values of the normalization, until a critical limit is reached.
lo= » With 0= (w1003)™. (4) At this critical limit the ground state becomes unstable. The
time evolution is done with a semi-implicit second order
For strongly nonsymmetric cases, particularly when comparfinite difference algorithm. An alternating scheme is used in
ing the two extreme cylindrical-shape geometries~w, thex; andx, directions, with a split step in the; direction.
< w3 (pancake shapend w,;<w,~ w3 (cigar shapg a no-  This procedure is done only fo5=0, taking advantage of
ticeable difference is expected between the correspondindpe reflection symmetry of the ground state. We consider

critical numbers of particles. 100° grid points and a time step equal Aar=0.001, verify-
We define a parametdy related to the critical number of ing that the algorithm is stable for long time evolution. As
trapped atoms\.., as in Ref[3]: we increment the normalization, approaching the critical

limit, the wave function starts to shrink. So, in order to main-
tain the precision, we introduce an automatic reduction of the
5 grid sizesAxq, Ax,, and Axz, gauged by the respective
root-mean-square radius in each direction.
This parameter is a maximum critical limit for stable solu- In Fig. 1 we show our main results for the critical constant
tions of the dimensionless E@2). It depends only on the k, covering many different geometries. We pldk (and k
ratio of the frequencies of the trap. Within the precisionon the right-hang axis) as a function of\, which is defined
given in Ref.[23], ks=0.5746, wheres is k for spherically by
symmetric traps. In Ref24], the critical number was calcu-

o Nelal.
lo

lated for a nonsymmetrical geometry, but in a case where the 0103 w3

frequency ratio is not too far from unitya(;/w, =0.72), A=— =<—> with wz=w,=w;. (6)
giving a result for the number of atoms almost equal to the w3 w2

spherical one. We show several curves in which we kept constant the

In experiments with ®Rb [3], an almost cylindrical ratio w3/w, (solid lines. The values ofv3/w, are indicated
“cigar-type” symmetry was considered, with the three fre- inside the figure, just below the corresponding plot. The
guencies given by 17.47 Hz, 17.24 Hz and 6.80 Hz. With thisdashed and dotted lines correspond to cylindrieg (L) and
symmetry, the authors have obtainked 0.459-0.012 (sta- deformed cylindrical §=1.414) symmetries for the trap,
tistical) +0.054 (systemati. In Ref. [12], assuming the where is the deformation parameter, as will be explained.
cylindrical symmetry w;=2m7X6.80 Hz, w,=w3=27 In the left-hand side of these plots we hawe= nw,>w,

X 17.35 Hz, k=0.55 was obtained, a value about 4% lower (cigar shapg and, in the right-hand side;>w,= nw,
thanks. (pancake shapek can be determined for any symmetry that

In our numerical approach, the calculation is performedwas not shown, by interpolating the results already given.
by evolving the nonlinear equatiof?) through imaginary The results for the complete nonsymmetric case are consis-
time [24]. The evolution is performed for an initial value of tent with the previously obtained values in cylindrical sym-
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w2)'® However, the maximum value & can only be directly re-
tep T lated to the maximum value &, whenw is kept fixed. And,
- with |, fixed, N; is maximized forh=1, corresponding to

the spherically symmetric cas&k=<kg). If we fix 1, and
wzlwy, N is maximized for a deformed cylindrical sym-
metry withA<<1, as one can see from Fig. 1.

Considering exact cylindrical traps, by exchanging the

e N
4

0.8 ﬁ___i_\\,__\ J/
F \\\ /

K, s frequencies(which, obviously, does not keep constant the
average frequency), the following ratio that was obtained
04 in Ref.[12] is valid:
Nc(A k(N
Nc(1/N) k(1/\)
00 L L] n 1 TRt aayl L PR
0.01 0.1 1 10 100 This result favors the pancakelike symmetry<{(w3/w,
A =w3/w, >1), to obtain a larger value fo¥,. Consider, for

FIG. 2. Exact results oks=Ng|a|(mws/#)2 for cylindrical ~ €xample, a cylindrical pancake-type trap wii=100, in
traps(solid lines are compared with corresponding variational ap- comparison with a cigar-type trap with= 1/100. We notice
proachegdashed lines In the 2D pancake limitw, = w,=w; and  that, in this caseR(\ =100)~1.6, implying that with such
ks=k\Y3 and, in the quasi-1D cigar limitw, = w,= w3 andks  pancakelike trap ¢;=100w,) one can obtain about 60%
=krn "8 Note thatA = w3/w; when w,=w,; and w;/w; when  more particles than with the corresponding cigarlike trap
w,= w3, (w3=w, =100w4). Let us consider the recent experiment

with a quasi-1D(cigarlike) trap used in the formation and
metry[12]. The maximum value for the critical numblkiis ~ Propagation of matter wave solitons, with.i [4]. In this
obtained for the spherically symmetric case; € w,= ws). case, axial and radial frequencies, respectively, equal to 3.2

As already observed, Fig. 1 includes previous calculation§lz and ~625 Hz were used[29]; or o, =w3z=27
in the limit of the quasi-1D(cigar-shape and quasi-2D X625 Hz, ;=27X3.2 Hz, and\ = w;/w3=0.00513. So,
(pancake-shapesymmetriegsee dashed lineHowever, for ~as shown in Fig. 2, we are essentially in the limit=0,
the sake of comparison with previous results obtained byvhich gives N Pla|/\/(mw,)~0.675. Considering that
several authors, we also present in Fig. 2 the cylindricathe scattering length was tunedde- —3a, (a9 is the Bohr
pancake-type ¢, = w;= w,<w3) and cigar-type ¢, =w5  radiug, the maximum number of atoms in this quasi-1D trap
= w,>w,) results. In Fig. 2, for cylindrical geometries, we is N:°~6400. If we exchange the radial and axial frequen-
compare our exact results fa;=N|a|(mw3/4)Y? as a cies in this experiment, going from a cigarlike to a pancake-
function of A with the corresponding variational ones of like trap, w, =27X3.2 Hz, w3;=27X625 Hz, and A
Refs.[7,15]. The variational result$dashed linesare con-  =w3/w, =195.3. In this caseN? P|a|/ A/ (Mw3)~1.12.
sistently a bit higher than the exact ones. Ror-0 (w;  So the critical number in the quasi-2D limit is about 66%
<w,=w3z=w,), the exact and variational results for the larger than the corresponding number of atoms in the
critical constant arél |a|(me, /%)*?=0.676 and 0.776, re- quasi-1D limit, andNZ2 °~ 10 600.
spectively. They are consistent with the quasi-1D limits The best way to distribute the frequencies to obtain the
given in Refs.[15,16. When wz>w,=w;, the variational ~maximum number of atoms was first considered in R&}.
2D limit \/m/2 of Ref.[7] is comparable with our exact result reaching the conclusion that the best is a spherical trap for
(k3=0.931/7/2). In this case, the quasi-2D limit coincides achieving maximum densityin an almost spherical trap au-
with the true 2D limit[25,19,22,2% thors obtained from-600 to~ 1300 atoms, in overall agree-

Considering the present analysis, we observelfhah a  ment with theoretical predictiori€].) The point is that to say
cigar-like (quasi-1D trap is smaller thaiN. in a pancakelike what is the best configuration for the maximum number of
(quasi-2D trap. And, as we deform a cigarlike tralf, also ~ atoms we must also say what is thenstrainton the fre-
increases. We need to clarify this matter, which is the subjeajuencies. If the constraint is to keep fixed the product
of the next four paragraphs, because this result apparently,w,w3 then the maximum number will be given for the
contradicts a remark made in Rdfl6], saying that “the = maximumk [as shown in Eq(5)], which happens in spheri-
cigar-shaped trap is the optimal one.” cal symmetry, in agreement with Rd6]. But, if two fre-

As shown in Ref[12] and also in the present calculation, quencies are equal and givarpriori, then the best configu-
in a deformed cylindrical symmetry, the cigar shapeth ration to increasé\, is to make the third frequency equal to
one of the frequencies smaller than the other)tigomore  zero, in agreement with Ref16]. However, if only one fre-
favorable to obtain a larger value bthan the pancake-shape quency is kept fixed, than the extreme pancake shape will
symmetry(with one of the frequencies larger than the othercontain more atoms, by making the remaining frequencies go
two). See, for example, in Fig. 1, the two extreme points ofto zero.
the curve withws/w,=100. This results from the definition As a final remark about the maximization Nf, we note
of k, Eq. (5), in terms of the average oscillator length that, for attractive two-body interactions, the frequencies in
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all three directions cannot be initially zero. In the experimen- 0.8 - - : .
tal process of condensation, the atoms must be trapped while
going from higher temperatur€ to the critical oneT.. By
making the frequencies too small, will be smaller and the
condensation harder to achief@s shown in Ref[27], T,
~hw(Niop) Y3, whereN,,, is the total number of particles in
the trag. Once the condensate is achieved, we can switch off
some of the frequencies, and obtain a finite maximum value
for N., as observed in Fig. 2 for=0. In the present work,

we are concerned with the case of zero temperature. The
effects of temperature on the collapse and N for the
spherically symmetric case have been discussed, for ex-
ample, in Ref[28]. N; is maximized by makingo as small

as possible. However, a discontinuity exists when taking all
the three frequencies exactly zero. Without a trap a collapse 0.2
will occur for any number of particles.

We must stress that Fig. 1 also includes nonsymmetric
cigar-type geometriees= nw,>w; and elliptical pancake- FIG. 3. The three componenis-1,2,3 of the mean-square ra-
type geometriesns> w,= nw;, wherey is the eccentricity  dius(x?)=(r?)/12 are shown in terms of the dimensionlégs|/|,
of the ellipses. In particular, the dotted line in Fig. 1 gives thefor the case thabs= 2w, w,=w, andw;=w/2.
critical values ofk for = 2. Thus, one could replot, as in
Fig. 2, a series of curves whose limiting cases describe norfion considered in the wave-function separation, as given in
Symmetric Cigar- or pancake"ke Symmetries_ In the 1D anc[lﬁ], is not valid. In this case we reach the other deformed
2D limits, one can obtain critical quasi-1D and quasi-2DPancakelike symmetry, whete;> w,~ ;. However, in the
numbers, for eachy. pancake geometry, the effect of deformationNp is negli-

One can also obtain an interesting result for asymmetri@ible. Comparing the quasipancakelike geometry with the
cigar-shape traps, wher@;= 7w,> w,, following the ap- quasicigarlike geometry shows that the numbgrin the
proach given in Sec. Il of Ref16]. The assumption made in cigarlike geometry is much more sensitive to deformations.
[16] to reduce the 3D equation to a 1D equation can be We have also studied the behavior of the root-mean-
justified in the limit when the forces in the transverse direc-square radius for the cases=+2w,=2w;. We verified
tions are the main forces responsible for the trapping poterthat, as the system approaches the critical p@intollapsg,
tial. So, in the limitw;—0, we are able to generalize the the wave function tends to be more “spherical,” confirming
solitonic 1D equation for a cigar-shaped trap, deformed by @n earlier conclusion made with a Gaussian variational ap-
given ratio »= w3/ w, between the transverse direction fre- proximation[30]. In Fig. 3, we show the corresponding re-
quencies. In this casey=1 cannot be arbitrarily larger. sults, for the three components of the mean-square radius
Also, by a scaling procedure applied to the equation for dif{r?)=135(x?) (i=1,2,3). As shown, whemN=0, we have
ferent values ofy, using our previous exact result, we have (r5)/(r3)=(r2)/(r3)=2; and whenN~N this ratio is

drastically reduced.
myVw,ws| 2 Ncal  [mes In summary, we have calculated systematically the critical
N¢|a] 5 = 5 =0.676.  (8)  number of particles, in systems that have negative two-body
7 interactions, for traps with arbitrary geometries. The maxi-
mum critical number of particled\., can be derived from
This generalizes the cigar-shape quasi-1D result$16f  the given value of the parametergiven in Eq.(5), once one
(with % such that we still have;>w,). The 1D solid line  has the scattering length, the mass of the atomic system, and
given in Fig. 2 is also applied to deformed cigar-shaped symthe frequencies of the trap. The results are shown in Figs. 1
metries if we replacé; by ky»~** on they axis. This result  and 2. The value o, for any symmetry not explicitly given,
may be relevant for asymmetric waveguide propagation agan be easily derived from Fig. 1 by interpolation. It is also
one can deform the cigar-type symmetry and control the colppinted out that the results shown in Fig. 2, in the 1D cigar-
lapsing condition. From Eq(8) we observe that the maxi- |ike case, can be extended for slightly deformed cylindrical
mum critical numberN. will increase when the cigarlike symmetries, by replacing theaxis labelks by kg7~ ¥4
symmetry is deformed by a factor proportional to  Qur main results in the present work are as followis.
(w3l wy)™. The maximum number of particlds, for arbitrary 3D trap

Now, let us see the effect of deformation in the samegeometries is given through the results shown in Figiil.
example of the cigar-shaped geometry used in Refwith  The optimal trap configuration, to avoid collapse with maxi-
‘Li gas. We use the same value afF—3a;, with @3  mum N, is found to be strongly dependent on the con-
=2mx625 s!, and takew,=w3/7. As given in Eq.(8),  straints of the frequencies of the trap. If we initially fix one
we go fromN.=6392 (y=1) to N,=6970 (y=+2) orN,  of the frequencies, the best configuration of the trap is pan-
=7601 (»=2). This means an increase 6f9% when»n  cakelike, with the other two frequencies going to zero.
=42 and~19% whennp=2. When»>1, the approxima- Analogously, if we initially fix two equal frequencies, the

1)

(Mean—Square Radius) /

0 0.2 0.4 06
Nlalil,
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best configuration of the trap is cigarlike, with the third fre- tion. N, will be rescaled by a factor of*4, generalizing the
quency close to zero. If we initially fix two different frequen- findings of Ref[16].

cies and try to vary the third frequency between the fixed

ones, the best configuration is again pancakelike. We show We are grateful to Randy Hulet for information provided.
thatN, is much more sensitive to deformations of the trap inA.G. also thanks Emerson Passos and Marcelo Pires for use-
a cigarlike geometry than in a pancakelike geometry. Finallyful discussions. For partial support, we thank Furzdade

for small deformationsy of the cigarlike traps, wherey ~ Amparo aPesquisa do Estado deSRaulo(FAPESH and

=1, releasing the longitudinal direction, the solitonic solu-Conselho Nacional de Desenvolvimento Ciéiat e Tecno-
tions obtained in Ref[16] will be rescaled by the deforma- logico (CNPQ).
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