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Improved numerical approach for the time-independent Gross-Pitaevskii
nonlinear Schrödinger equation
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In the present work, we improve a numerical method, developed to solve the Gross-Pitaevkii nonlinear
Schrödinger equation. A particular scaling is used in the equation, which permits us to evaluate the wave-
function normalization after the numerical solution. We have a two-point boundary value problem, where the
second point is taken at infinity. The differential equation is solved using the shooting method and Runge-
Kutta integration method, requiring that the asymptotic constants, for the function and its derivative, be equal
for large distances. In order to obtain fast convergence, the secant method is used.@S1063-651X~99!04608-5#
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Precise and fast numerical solutions to nonlinear eq
tions have become considerably important in computatio
physics. So the numerical procedures are relevant, also t
described, when treating such problems, considering the
that the computation is time consuming. In the present wo
we pay attention especially to this problem, proposing
alternative approach to a method recently described in R
@1#, which was used to solve the Gross-Pitaevskii@2# nonlin-
ear Schro¨dinger equation~NLSE! for trapped neutral atoms
with positive two-body scattering lengths. In Ref.@3#, the
NLSE treated in Ref.@1# was extended to a time-depende
one, for both positive and negative two-body scatter
lengths, where the Crank-Nicolson algorithm~appropriate
for time evolution! was considered. This approach, howev
has the disadvantage that it can only reach stable soluti
In case one needs to add other nonlinear terms~of higher
order! in the original equation@4#, it is not feasible to reach
another region of stable solutions if in between there is
unstable region. This implies that it should be appropriate
combine a static method~such as the one used in Ref.@1#!
with the method used in Ref.@3# when we are interested i
obtain all the stable and unstable solutions and also the
responding time evolution. So, in this perspective, any
provement of the method considered in Ref.@1# would be
relevant.

In the following, we briefly describe the physics related
the NLSE considered in@1# and the numerical procedur
used to solve it. Then we present an alternative appro
which can considerably reduce the time needed to searc
the solutions and the normalizations.

The nonlinear Schro¨dinger equation, which describes th
condensed wave function in the mean-field approximati
can be written as@1#

F2
\2

2m
¹21

m

2
v2r 22

4p\2uau
m

uC~rW !u2GC~rW !5mC~rW !,

~1!

where m is the mass of a single atom,v the angular fre-
quency of the trap,m the chemical potential, anda the scat-
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tering length. In the present approach, as we are more
cerned with numerical aspects; for convenience we treat o
cases with negative scattering lengths (a,0). @For the nu-
merical considerations, there are no restrictions about
sign of the scattering length, as the solutions witha.0 are
equally accessible using the same procedure and chan
the sign of the nonlinear term in Eq.~1!.# Later we also
consider the inclusion of a three-body interaction term.

The chemical potentialm is fixed by the numberN of
atoms in the condensed state, which is given by the norm
ization condition

E d3r uC~rW !u25N. ~2!

In Refs.@1# and@3# the NLSE for Bose-Einstein condensate
as given in Eq.~1!, was solved numerically. In Ref.@1#, the
shooting and the Runge-Kutta methods@5,6# were combined.
For a given normalization parameter the corresponding
mensionless equation was solved. The asymptotic form
the wave function was renormalized to be equal to the
merical wave function for a sufficiently large distance. T
wave-function normalization parameter was increased u
the Wronskian of the asymptotic behavior of the numeri
and the analytic function change sign.

Next, we present in detail the numerical approach
have used, in order to show the similarities and subtle diff
ences between this approach and the one of Ref.@1#. As we
suggest from our experience, such subtle differences in
numerical procedures will reduce considerably the ti
needed to search for the solutions. We first rewrite Eq.~1! in
dimensionless units, in order to makes apparent the phys
scales contained in Eq.~1!. By rescaling Eq.~1! for the
s-wave solution, we obtain@4#

F2
d2

dx2
1

1

4
x22

uF~x!u2

x2 GF~x!5bF~x!, ~3!
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where x[A2mv/\ r , F(x)[A8puau rC(rW), and b
[m/\v<3/2. The normalization forF(x), obtained from
Eq. ~2!, defines a real numbern ~given asuCnl

3Du in Ref. @1#!
related to the number of atomsN:

E
0

`

dxuF~x!u25n, where n[2NuauA2mv

\
. ~4!

We would like to emphasize that, by using this scali
procedure, the numerical solutions for the equation are
of any normalization constraint or other parameter dep
dence. The parameterN, related to the number of particle
was removed from the differential equation and it is not n
essary to check Eq.~2! or ~4! at all steps of the calculation
The normalization is founda posteriori, using Eq.~4!.

The boundary conditions for Eq.~3! are given as@1#

F~0!50 and F~x!ux˜`˜Fasym~x!,

Fasym~x![C expF2
x2

4
1S b2

1

2D ln~x!G , ~5!

whereC is a constant to be determined. By using the Run
Kutta method and starting with a givenF(0), theproblem is
reduced to determining the value of the corresponding
rivative F8(0), which satisfies the asymptotic condition
infinity. So we are tempted to shoot@5,6# many values for
F8(0) until we obtain numerically a constant for large d
tances. At a certainxmax we expect a constant, given by

CF[Fnum~x!expFx2

4
2S b2

1

2D ln~x!G . ~6!

This process is very laborious and difficult to reach prec
solutions due to the problem of verifying, for some largex,
when CF is constant, within the required numerical prec
sion. The way to overcome these difficulties is to consi
the asymptotic derivative ofF(x), that is,

Fasym8 ~x!5CF2
x

2
1S b2

1

2D 1

xGexpF2
x2

4
1S b2

1

2D ln~x!G ,
~7!

and also determine~numerically! the expression

CF8[Fnum8 ~x!F2
x

2
1S b2

1

2D 1

xG21

3expFx2

4
2S b2

1

2D ln~x!G , ~8!

with xmax such that both Eqs.~8! and~6! are constants. When
we are using the correct value ofF8(0) we also should
obtainCF5CF85C for a large enoughx5xmax.

A useful remark we can make is that when we overe
mate the value ofF8(0), CF increases andCF8 decreases
e
-

-

-

e-

e

r

i-

The inverse happens when we underestimateF8(0). Sothis
condition is valuable to tuneF8(0). It corresponds tosolv-
ing the equation

CF2CF850, ~9!

havingF8(0) as the unknown variable. Substituting Eqs.~6!
and ~8! into Eq. ~9! we recover the expression for th
Wronskian W„Fnum(xmax),Fasym(xmax)…50 stated in@1#.
Equation ~9! can be solved by secant method@6#. So we
begin with an approximate solution forF8(0), as aninput to
the secant method, whereCF andCF8 are evaluated by the
Runge-Kutta method. We should emphasize that, to succ
with such a method, the original guess forF8(0) should be
not far from the correct value; otherwise the method can l
to the trivial solutionF(x)50 or to overflows. In our pro-
cedure, for a fixedb, xmax was first estimated to be equal t
4.2 andF8(0) was used as an initial trial to extendxmax to
5.6 and subsequently to 7.0. Once we find a solution
F8(0), for a given b, we decreaseb slightly by Db using
the previousF8(0) to find the newF8(0). This process
allows us to ‘‘walk’’ along b values, obtaining the corre
sponding solutions and results forn.

Although the secant method can become unstable un
certain conditions, in this case it will not occur, as we e
plain in the following. We found that the secant method
appropriate, as we can be as near as desired to the solu
starting with a given analytical solution of the correspondi
linear Schro¨dinger equation. So we just need to impleme
an automatic algorithm routine to make slow variations ofb
and the corresponding slow shift~from the initially zero! of
F8(0), in order to satisfy the corresponding nonlinear equ
tion. In this way, we are always near the solution, such t
the secant method can be applied. We think the same pr
dure can be generally applied for solitonic equations. T
algorithm of the slow variation ofb ~deformation algorithm!
does not need an estimation for the derivative of the w
function atx50 †as given in Eq.~3.7! of Ref. @1#‡ for every
solution, except for the first one where we take it near
harmonic oscillator solution. We understand that the anal
cal approximation given in Ref.@1# to estimate the derivative
at x50 is not the most convenient in the present case. C
sidering that in general such equations are highly nonline
the initial guess for the derivative ofF at x50 can easily
cause overflow when determining the asymptotic consta
~Wronskian! at large distances. Our initial guess can be ve
close to the harmonic oscillator solution, which correspon
to F8(0)50, avoiding possible overflows for sufficientl
large distances. In our numerical approach, considering
b51.5 is a trivial solution of the linear harmonic oscillato
we started withb51.4, trialF8(0)50.6, andDb50.02. For
eachb four to six iterations were necessary in the sec
method@6#, for eachxmax.

Our results, for several values ofb, are partially listed in
Table I. The solutions withb<0.4 are unstable and no
shown in Ref.@3#. However, the solutions withb>0.4 agree
well with their results. As one can observe in Table I, t
method also can reach solutions with negative chemical
tentials (b,0). A numerical stability check, which can b
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done by evolving the static solutions, can easily be follow
by using a time-dependent method, such as the Cra
Nicolson method@3,6#.

In Fig. 1 we also show three plots for the chemical pote
tial b as a function ofn, in the case of zero angular mome
tum. The three plots shown correspond to the lower ra
states (nr50,2,4) of Eq.~3!. The plot labeled withnr50
corresponds to Table I. In the limit of the harmonic oscilla
solution, wheren50 and the equation is linear, we obta
the usual known solutions.

In Fig. 2 we have another example of the application
the method described here. In this case, we consider the
dition of another nonlinear term inside the square bracket
Eq. ~3!, given by

g3

uF~x!u4

x4
, ~10!

which can be directly related to the three-body effects, wh
g3 is the nondimensional strength of the corresponding th

TABLE I. Numerical solutions for the NLSE including two
body interaction, when the two-body scatteringa is negative. We
consider that atxmax57.0 we have achieved the asymptotic limit

b f8(0) C n

1.5 0 0 0
1.4 0.5448721 0.535 0.3310
1.2 0.9939222 0.929 0.8597
1.0 1.3567267 1.187 1.2282
0.8 1.7022822 1.374 1.4607
0.6 2.0495486 1.510 1.5839
0.4 2.4045809 1.608 1.6254
0.2 2.5851166 1.648 1.6237
0.0 3.1340461 1.741 1.5632

21.0 4.8924036 2.110 1.2234
22.0 6.3914678 2.995 0.9843

FIG. 1. We show the chemical potentialb as a function ofn,
which is related to the number of particles by Eq.~4!. The three
plots shown correspond to the lower radial states (nr) of Eq. ~3!
~with zero angular momentum!, such that in the limit of the har-
monic oscillator solution, wheren50, we have the usual known
solutions. The plot labeled withnr50 corresponds to Table I.
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body interaction. The physical consequences of the addi
of such a term in the NLSE is discussed in both referen
given in @4#.

To finalize, we have presented in detail an improvem
to a numerical procedure used to solve a nonlinear differ
tial equation, which is commonly applied for Bose
condensed states. In our example, we solve the Gr
Pitaevskii equation with an attractive two-body and
repulsive three-body interaction. We should note that, by
ing a simplified scaling procedure@given in Eqs.~3! and~4!#,
the numerical solutions for the equation are free of any n
malization constraint or other parameter dependence.
parameterN, related to the number of particles, was remov
from the differential equation and it is not necessary to o
tain the normalization at each step of the calculation. Eq
tion ~4! gives the normalizationa posteriori. So, by using the
above scaling procedure, it emerges that the main differen
between the present method and the one given in Ref.@1#,
when looking for solutions of the NLSE, are that~i! in our
approach, we searched for the derivative of the wave fu
tion at x50 until the asymptotic constants match~when the
Wronskian vanishes! and the normalization is given at th
end;~ii ! in @1# the normalization parameterA is incremented
until the sign of the Wronskian is changed. For the fin
renormalization they also use other intermediate parame
such asA0 , N0 , A1, andN1.

As we are not restricted by the normalization, our a
proach is a clear improvement to the method given in R
@7#, particularly when considering the simplification and t
transparency in the normalization procedure. Such an ad
tage can be further explored when more involved calcu
tions are presented, as in Ref.@7# where collective excita-
tions are evaluated. A different scaling removes t
normalization constraint and allows one to obtain ita poste-
riori , after numerical solutions are achieved for the eigenv
ues.

In our numerical procedure, we employ the shooti
method on Runge-Kutta integration, matching the asympt
constants for the wave function and for the correspond

FIG. 2. We show the chemical potentialb as a function ofn, in
the case where we consider three-body effects. The three p
shown correspond to the radial state solutions forg350 ~no quintic
term!, g350.016, andg350.03. The plot labeled withg350 cor-
responds to Table I.
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derivative. This procedure is shown to be equivalent to m
ing the Wronskian vanish at such large distances. In orde
obtain a faster convergence to the solution, we also inclu
the secant method. The numerical optimization of
method employed in Ref.@1#, described here, is not restricte
to the NLSE we have used. It can be used quite generic
for second-order solitonic differential equations whose so
tions asymptotically vanish at large distances. We cons
particularly relevant an optimization of the method of R
s,

i

-
to
d

e

lly
-

er
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@1# from the perspective of looking for solutions of differen
tial equations with higher-order nonlinear terms and a
from the perspective of combining such a method~appropri-
ate for static solutions! with a time-dependent one.
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