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Abstract

We reinvestigate the Bose–Einstein condensation (BEC) thermodynamics of a weakly inter-
acting dilute Bose gas under the action of a trap using a semi-classical two-uid mean-�eld
model in order to �nd the domain of applicability of the model. Such a model is expected to
break down once the condition of diluteness and weak interaction is violated. We �nd that this
breakdown happens for values of coupling and density near the present experimental scenario of
BEC. With the increase of the interaction coupling and density the model may lead to unphysical
results for thermodynamic observables. c© 2000 Published by Elsevier Science B.V. All rights
reserved.
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1. Introduction

The recent experimental observation of Bose–Einstein condensation (BEC) in a
weakly interacting dilute gas of 87Rb [1,2], 23Na [3], 7Li [4,5], and 1H [6] employing
magnetic traps at ultra-low temperatures calls for a theoretical investigation on various
aspects of the condensate. The condensate consists of few thousands to few millions of
atoms con�ned by the trap potential. As the temperature is lowered below the critical
temperature T0 of BEC, the condensate starts to form and �nally at 0 K all the avail-
able atoms will be condensed. In the absence of a microscopic equation, the condensate
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is usually described by the mean-�eld Gross–Pitaevskii (GP) equation [7,8]. One of
the primary interest on the process is to study the thermodynamic observables of the
system, such as, the condensate fraction, internal energy, and speci�c heat.
There have been several comprehensive studies on temperature dependencies of

thermodynamic observables of the condensate using semiclassical mean-�eld two-uid
models [9–15]. The physical ingredients of these models are quite similar. One such
model using the GP wave function provides satisfactory description of the tempera-
ture dependencies of the thermodynamic observables in two [13], and three [12,16]
dimensions. These studies employed an iterative solution of the system of equations
involved. For the condensation of a system composed of 40 000 trapped 87Rb atoms
with repulsive interatomic interaction, the iterative scheme converged rapidly and pro-
vided a satisfactory account of the condensate fraction, internal energy, and speci�c
heat [12]. Similar conclusion was also reached in the study of condensation of 7Li
atoms [16]. In the case of 7Li, the attractive interatomic interaction is responsible for
collapse if the number of atoms is larger than approximately 1400 [17–19].
Here we reinvestigate critically the BEC of a weakly interacting dilute gas in two

and three dimensions using the two-uid mean-�eld model mentioned above in order to
de�ne the domain of its applicability. We have included the two-dimensional BEC in
this study because of considerable recent interest in this topic [13,20–25]. We employ
the usual iterative solution of the nonlinear two-uid mean-�eld model and study the
convergence of the iterative scheme. Although, the convergence is rapid for a weakly
interacting dilute system, with an increase of the strength of interaction and=or density,
the model breaks down and leads to physically unacceptable results for the thermo-
dynamic observables. Speci�cally, below the critical temperature, the model may yield
negative speci�c heat.
However, it is well-known that the mean-�eld description of the condensate via

the GP equation as used in the semiclassical models above should hold under the
condition of diluteness of a weakly interacting Bose gas and is expected to break down
once the conditions of diluteness and weak interaction are violated (see, for example
Ref. [15, p. 474]). The breakdown should happen for a large number of condensed
particles reecting a large density as well as for a large modulus of the scattering
length denoting a strong interatomic interaction. These two conditions correspond to
a large nonlinearity of the system and may lead to a breakdown of the mean-�eld
two-uid thermodynamic model [9,15]. In addition, the �nite size of the system may
necessitate corrections in the thermodynamic model as we are away from the real
thermodynamic limit N → ∞, V → ∞, where N is the number of particles and V the
volume of the system. 1 Nevertheless, exact numerical conditions for the breakdown
of the mean-�eld thermodynamical model have never been investigated. In this work
by performing numerical calculations we identify such conditions. We �nd that the
semiclassical model may break down under possible present experimental conditions
of BEC of a trapped Bose gas.

1 These limitations of the thermodynamic model are discussed in Section 5 of Ref. [15].
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We present the semiclassical model in Section 2, numerical results in Section 3, and
conclusions in Section 4.

2. Mean-�eld model

We consider a system of N bosons with repulsive interaction at temperature T under
the inuence of a trap potential. The condensate is described by the following GP wave
function in the Thomas–Fermi approximation [12,13]:

|	(r)|2 = � − Vext − 2gn1(r)
g

�(� − Vext − 2gn1(r)) ; (1)

where �(x) is the step function, �(x) = 0 if x¡ 0 and 1 otherwise. Here, Vext(r) ≡
m!2r2=2 is the trap potential, g the strength of the repulsive interaction between the
atoms, m the mass of a single bosonic atom, ! the angular frequency, � the chemical
potential, and n1(r) represents the distribution function of the noncondensed bosons. As
we are interested in studying the limits of validity of the semiclassical mean-�eld model
and not in simulating a particular experimental situation, we consider a spherically
symmetric trap both in two and three dimensions. The noncondensed particles are
treated as non-interacting bosons in an e�ective potential [26]

Ve� (r) = Vext(r) + 2gn1(r) + 2g|	(r)|2 : (2)

Thermal averages are calculated with a standard Bose distribution of the noncondensed
particles in chemical equilibrium with the condensate governed by the same chemical
potential �. In particular the density n1(r) is given by [12,13,26]

n1(r) =
1

(2�˝)D

∫
dDp

exp[{p2=2m+ Ve� (r)− �}=kBT ]− 1 ; (3)

where kB is the Boltzmann constant, and D(≡ 2; 3) is the dimension of space.
Eqs. (1)–(3) above are the principal equations of the present model. The total number
of particles N of the system is given by the number equation

N = N0 +
∫

�(E) dE
exp[(E − �)=kBT ]− 1 ; (4)

where N0 ≡
∫ |	(r)|2dDr is the total number of particles in the condensate. The critical

temperature T0 is obtained as the solution of Eq. (4) with N0 and � set equal to 0.
The semiclassical density of states �(E) of noncondensed particles is given by [12,13]

�(E) =
2�mD=2

(2�˝)D

∫
Ve� (r)¡E

[8(E − Ve� (r))](D−2)=2 dDr : (5)

The average single-particle energy of the noncondensed particles is given by [12]

〈E〉nc =
∫

E�(E) dE
exp[(E − �)=kBT ]− 1 : (6)

The kinetic energy of the condensate is assumed to be negligible and its interaction
energy per particle is given by 〈E〉c=(g=2)

∫ |	(r)|4 dDr. The quantity of experimental
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interest is the average energy 〈E〉=[〈E〉nc(N −N0)=2+ 〈E〉c]=N; which we calculate in
the following. The speci�c heat is de�ned by C = d〈E〉=dT [12].
Eqs. (1)–(5) are to be solved iteratively. The iteration is started at a �xed tem-

perature with a trial chemical potential � using n1(r) = 0. Then 	(r) and Ve� (r) are
calculated using Eqs. (1) and (2). With these results n1(r); 	(r); and Ve� (r) are recal-
culated. This procedure is repeated until desired precision is obtained. The results for
the lowest order of iteration with n1(r) = 0 will be denoted by I = 1, and successive
orders by I = 2; 3; : : : . With the solutions 	(r) and Ve� (r) so obtained, the density of
states �(E) of Eq. (5) is calculated. Then it is seen if they satisfy the number equation
(4). If Eq. (4) is satis�ed the desired solution is obtained. If not, the initial trial � is
varied until the number equation is satis�ed. In each order of iteration we calculate
the condensate fraction N0=N and energy 〈E〉.

3. Numerical study

First, we consider the three-dimensional case. In this case, the coupling g is given
by g = 4�˝2a=m, where a is the scattering length. Usually, a dimensionless coupling
is introduced via � ≡ (mg=�˝2)=aho = 4a=aho, where aho =

√
˝=m!. The semiclassical

model under consideration should break down as either � or N is increased. This will
violate the condition of weak interaction and diluteness. In the case of experiment on
BEC of 87Rb, �=0:025 and N =40000 [1,2,12]. To test our calculational scheme, �rst
we solve the present model for �=0:025 and N=40000. Our results are very similar to
those of Ref. [12]. The small di�erence between these two calculations is due to the use
of an isotropic harmonic oscillator potential in this work and an anisotropic potential
in Ref. [12]. In this case, speci�c heat is positive at all temperatures. Next, we increase
� and N . We �nd that as � and N are increased, the energy develops a maximum at a
temperature below T0. Consequently, the speci�c heat becomes negative for an interval
of temperature above this maximum. To show this violation in a pronounced way here
we show the results for the following three cases: (a) � = 0:1, N = 106, (b) � = 0:1,
N = 107, and (c) � = 0:5; N = 106. In the case of 23Na, the experimental N was as
high as 107 [3]. As the interaction is repulsive in both 87Rb and 23Na, it should be
possible to have 107 atoms in a BEC of 87Rb under favorable experimental conditions.
Hence, these values of the parameters are within the present experimental scenario. In
Fig. 1(a), (b) and (c) we plot 〈E〉=NkBT0 and N0=N versus T=T0 for di�erent iterations
for the above three cases. We �nd that the energies are acceptable under conditions
of diluteness and very weak interactions, but as � and N increases the average energy
of the system may have a maximum leading to a negative speci�c heat above the
maximum. From Fig. 1(a)–(c) we �nd that this violation happens in the case (c)
which has the largest � and N . We veri�ed that for su�ciently large values of � and
N the lowest-order energy also leads to negative speci�c heat.
Next, we consider the two-dimensional case. In this case, in analogy with the

three-dimensional case, a dimensionless coupling is introduced by � ≡ (mg=�˝2).
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Fig. 1. Condensate fraction N0=N and energy 〈E〉=NkBT0 in three dimensions as a function of T=T0 for
(a) �=0:1 and N =106, (b) �=0:1 and N =107, and (c) �=0:5 and N =106 for iterations I =1 (full line),
2 (dashed-dotted line), and 4 (dotted line). The straight line represents the classical Maxwell–Boltzman
result of energy.

This coupling is already dimensionless, whereas we needed to divide it by aho in
three dimensions to make it dimensionless. First, we repeat the calculations reported in
Ref. [13] and our results are in agreement with that study. In addition, in agreement
with our �nding in three dimensions, we �nd that for small values of � and N the
equations of the model converge well and lead to acceptable values for condensate
fraction N0=N and energy 〈E〉=NkBT0. For larger values of � and=or N , the condensate
fraction N0=N is quite acceptable with a temperature dependence similar to that in
three dimensions. However, the energy produces a maximum as N and � increase.
Hence, we shall be limited to a consideration of energy only.
As there is no experimental guideline for probable values of N and � in two dimen-

sions, as in Ref. [13], we consider N = 105 and �= 0:1; 1, and 10. In Fig. 2 we plot
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Fig. 2. Energy 〈E〉=NkBT0 in two dimensions as a function of T=T0 for N = 105 and �= 0:1, 1, and 10 for
iterations I = 1; 2 and 4. Notations are the same as in Fig. 1. The curves are labeled by the values of �.

the temperature dependence of average energy 〈E〉=NkBT0 for di�erent iterations. The
lowest-order results for � = 0:1 and 1 are in agreement with those of Ref. [13]. The
classical Maxwell–Boltzmann result for a noninteracting gas is also shown in Fig. 2.
For a weakly interacting gas with � = 0:1, the energies for all orders of iteration are
acceptable. For a stronger interaction with �=1, the lowest-order energy is acceptable.
However, in this case the energies for all orders of iteration produce maxima leading
to negative speci�c heat. For �=10, the lowest-order result already leads to a negative
speci�c heat.
In addition to the trouble discussed above, the mean-�eld model may exhibit another

unacceptable behavior. We see in Figs. 1 and 2, that the energy of the system could be
larger than the corresponding classical Maxwell–Boltzmann result for a noninteracting
ideal gas. We recall that for BEC to materialize, the energy of the condensate should
be smaller than the corresponding energy of the noncondensed system. However, one
should consider the correction to the classical result above due to the presence of
the trap and the interatomic interaction. In all our calculations we have noted that
kBT0/˝!, so that for temperatures close to T0 considered above the correction to the
classical energy due to the presence of the trap can be neglected. The same is also
true for the interatomic interaction at temperatures close to T0, for the values of �
considered in this study. Consequently, the energy of the condensate of the mean-�eld
model could be larger than the classical result signaling a breakdown of the model.
It is well known that the semiclassical model requires kBT0/˝! and the Thomas–

Fermi approximation does not hold for very small number of atoms in the condensate.
For the cases studied here kBT0 is typically 50–100 times larger than ˝! and Thomas–
Fermi approximation apparently seems to be valid for the condensates. The diluteness
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condition for the validity of the GP equation na3. 1 is also valid in three dimensions,
where n is the density. For the case considered in Fig. 1(a), N = 106, a = 50 nm,
for a condensate of typical dimension 100 �m, na3∼ 10−3. 1. The values of na3 are
larger for Figs. 1(b) and (c). Nevertheless, we �nd that these values of diluteness and
coupling set a limit to the applicability of the semiclassical mean-�eld two-uid models
for studying BEC thermodynamics.

4. Conclusion

In conclusion, we reexamined the problem of BEC under the action of a trap potential
using a two-uid mean-�eld model [12,13] in both two and three dimensions. We
employed an iterative solution scheme of the system of equations. Although the system
leads to rapid convergence for a weakly interacting dilute system, with the increase
of coupling and particle number the iterative scheme leads to physically unacceptable
results for thermodynamic observables. Speci�cally, this may lead to a maximum in
energy responsible for a negative speci�c heat. In three dimensions the breakdown of
the mean-�eld model happens for values of coupling and particle number, which are not
so remote from present experimental scenario for repulsive interatomic interaction. In
addition, the energy of the condensate could be larger than the corresponding classical
energy of the system, which is another independent unacceptable result of the model.
The larger values of the coupling � and N considered in this work possibly sets a
limit to the applicability of the mean-�eld equations for BEC. Summarizing, the most
important �nding of this study is that the iterative solution of the mean-�eld model of
Refs. [12,13] for a condensate may lead to unphysical thermodynamical properties for
medium to large coupling and number of particles.
Despite the above de�ciency of the mean-�eld two-uid thermodynamical models,

they continue to be very useful in many cases. The virtue of these models is the sim-
plicity and ability to yield results in agreement with experiment for weak interactions
and dilute systems. As a theoretically sound description of the BEC thermodynam-
ics seems to be unmanagably complicated, these simple mean-�eld two-uid models
remain as attractive simple alternatives to study thermodynamical properties provided
that proper attention is paid to remain inside the domain of their validity.
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