
Physics Letters A 359 (2006) 339–344

www.elsevier.com/locate/pla

Relaxation algorithm to hyperbolic states in Gross–Pitaevskii equation
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Abstract

A new version of the relaxation algorithm is proposed in order to obtain the stationary ground-state solutions of nonlinear Schrödinger-type
equations, including the hyperbolic solutions. In a first example, the method is applied to the three-dimensional Gross–Pitaevskii equation, de-
scribing a condensed atomic system with attractive two-body interaction in a non-symmetrical trap, to obtain results for the unstable branch. Next,
the approach is also shown to be very reliable and easy to be implemented in a non-symmetrical case that we have bifurcation, with nonlinear
cubic and quintic terms.
© 2006 Elsevier B.V. All rights reserved.

PACS: 02.70.-c; 03.75.Nt; 02.60.Cb; 11.10.Lm
The Gross–Pitaevskii (GP) equation [1] has been extensively
used in the description of Bose–Einstein condensates at tem-
perature T = 0 [2]. Usually this equation provides ground state
solutions that can readily be achieved with several algorithms.
This equation has a cubic nonlinearity. In general, for a negative
cubic term (negative two-body scattering length, a < 0), with a
fixed and reasonable (not too large) nonlinearity, a bifurcation
branch in the solutions is observed. So, two stationary solutions
are present; one, given by the minimum of the energy, is the
ground state; and the other, which corresponds to a maximum
of the energy, is referred as the hyperbolic solution. The hyper-
bolic solutions are relevant for precise determination of criti-
cal points, phase transitions and tunneling effects. Hyperbolic
states were first determined in spherical geometries by Newton
algorithm [3] and by shooting methods [5,7]. Shooting meth-
ods are inherently one-dimensional and cannot be extended
to higher dimensions. When we have a cylindrical geometry,
the hyperbolic states can be found by generalizing the New-
ton algorithm to higher dimensions [6]. A method based on a
technique that combines Fourier transform and renormalization
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[4] can also be employed, though it still requires the Newton
method and a careful treatment in the case of negative eigen-
values. Newton method requires solution of nonlinear systems
at considerable computational expense for higher dimensions.
Alternatively, relaxation techniques have been extensively used
to obtain ground state solutions in GP equation [8–11]; and can
also be generalized to higher dimensions.

A relaxation algorithm only requires iteration and needs
much less computational expense than Newton method, par-
ticularly for higher dimensions. However, the usual relaxation
algorithm relax to a minimum, such that the hyperbolic states
are not reachable by this procedure.

In the present work we devised a modified relaxation algo-
rithm to obtain not only the ground state, but also the hyperbolic
states. The proposed algorithm consists of a method that pro-
vides a convenient modification in the stability of the original
problem, such that the same relaxation technique can be used to
obtain the hyperbolic solutions. The Letter is organized as fol-
lows. We first review several numerical methods that have been
employed to solve the GP equation. Further, we describe the re-
laxation algorithm and how it can be appropriately modified to
achieve the new algorithm. Finally, we show a few examples
that provide the reliability and usefulness of the present algo-
rithm. The examples are given for cylindrical cases, including
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the determination of critical points, extreme cases in the quasi-
1D limit, and also by considering the addition of a quintic term.
The last case, with negative cubic and positive quintic terms, is
an example where we can observe pitchfork bifurcations.

We should also mention other useful methods to obtain nu-
merical solutions of nonlinear differential equations. Bao and
Tang [12], for example, have proposed a method to compute
the ground-state solution of trapped interacting Bose–Einstein
condensate (BEC) by directly minimizing the functional energy
via finite element approximation. Another efficient algorithm,
based on a discrete variable representation (DVR) of the Hamil-
tonian, was proposed in Ref. [13], as an alternative to standard
iterative techniques to solve GP equations, particularly in cases
where the techniques fail to obtain convergent solutions. The
DVR method was used in [13] to obtain the ground-state so-
lutions of fully anisotropic cases. However, both methods pro-
posed in [12] and [13], besides their advantages, are not ad-
dressing to the hyperbolic solutions of nonlinear equations with
attractive two-body interactions.

The Gross–Pitaevskii equation is given by

(1)ih̄
∂Ψ

∂t
=

[
Hho + 4πNh̄2a

m
|Ψ |2

]
Ψ,

where Ψ ≡ Ψ (�r, t) is the system wave-function normalized to
unity. Hho is the Hamiltonian harmonic oscillator operator for
a particle with mass m:

(2)Hho ≡ − h̄2

2m
∇2 + m

2

3∑
i=1

ω2
i x

2
i .

Next, we write the above equations in dimensionless units. We
consider a unit of frequency ω, to be defined appropriately
according to the geometry of the problem. In this case, the
physical frequencies ωi (i = 1,2,3) are redefined to dimen-
sionless quantities as ωx ≡ ω1/ω, ωy ≡ ω2/ω and ωz ≡ ω3/ω

and the unit of energy is h̄ω. The unit of length is defined as
lω ≡ √

h̄/(mω). Usually, in the three-dimensional geometries,
ω is taken as the mean geometric value, such that ω3 ≡ ω1ω2ω3.
In this case, we define the unit of length as l0 ≡ lω, In the cylin-
drically symmetric case, when ω1 = ω2 �= 0, in some cases it
is also convenient to define ω as ω1 and the unit of length as
lρ ≡ √

h̄/(mω1). For future numerical purposes, we also con-
sider an imaginary time variable, which in dimensionless units
is defined as τ ≡ iωt/2. So, with the wave function of Eq. (1)
being redefined such that |Ψ (�r, t)|2 ≡ |ψ(�x, τ )|2/l3

ω , we have

−∂ψ(�x, τ )

∂τ
= [

H0 + 8πη
∣∣ψ(�x, τ )

∣∣2]
ψ(�x, τ )

(3)= 2μψ(�x, τ ),

where η ≡ Na/lω, μ is the dimensionless chemical potential
(with h̄ω the energy dimension) and

(4)H0 ≡ − ∂2

∂x2
+ ω2

xx
2 − ∂2

∂y2
+ ω2

yy
2 − ∂2

∂z2
+ ω2

zz
2.

ψ ≡ ψ(�x, τ ) in Eq. (3) is normalized to one. Note that, in the
spherically symmetric case (ω ≡ ω1 = ω2 = ω3) we have ωx =
ωy = ωz = 1; and, in a cylindrically symmetric case, with ω =
ω1 = ω2, we have ωx = ωy = 1 and ωz = ω3/ω.

In the following we present several relaxation schemes that
finally lead to scheme C to obtain stable and unstable solutions
for η < 0.

Usual relaxation scheme

The usual relaxation scheme is considered, for example, in
Ref. [11]. For a given η either positive or negative, Eq. (3)
is propagated in time. For very long time it converges to the
ground state solution. Because this process is dissipative, we
must renormalize ψ to one at each time step. The chemi-
cal potential is obtained a posteriori using μ = ∫

ψ∗[H0 +
8πηψ2]|ψ d �x. The propagation is made by split-step tech-
nique, where the diffusion term is implemented by Crank–
Nicolson algorithm, and the potential and nonlinear terms are
just exponentiated.

In the above procedure, usually one provides η to obtain μ.
Considering only ground state, when η is negative (attractive
two-body interaction) we also have hyperbolic solutions (max-
ima for the energies), that are not reachable through this re-
laxation algorithm. As our aim is also to obtain the hyperbolic
solutions within the same algorithm, a first trial approach is
to provide μ to obtain η. With this parametrization there is
no multivalued solution. Two similar relaxation schemes (A
and B) are found appropriate to obtain the solutions of a non-
linear Schrödinger-type equation, when the (cubic) nonlinear
interaction is positive. With a convenient modification of the
scheme B, we finally reach a scheme C that works to obtain all
the solutions for η < 0, including the hyperbolic ones.

Scheme A

The solution of Eq. (3) for η > 0 can also be accomplished
by evolving the equation [3]

(5)−∂ψ̃

∂τ
= [

H0 + 8π |ψ̃ |2 − 2μ
]
ψ̃,

where

(6)|ψ̃ |2 ≡ η|ψ |2,
and the stationary solutions are given by ∂ψ̃/∂τ = 0. In this
process, given μ, the equation is propagated without normal-
ization to one, with η being obtained a posteriori by

(7)η =
∫

d3r |ψ̃ |2.
However, this approach does not work for negative nonlinearity.

Scheme B

Another scheme to solve Eq. (3), similar to the scheme A, is
to obtain the numerical solution for

(8)−∂ψ

∂τ
= [

H0 + 8πη|ψ |2 − 2μ
]
ψ,
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with the time discretization followed by

(9)ηn+1 ← ηn

∫
d3r |ψn+1|2,

where ψ is normalized to one at each time step.

Scheme C

The schemes A and B are completely equivalent. However,
the scheme B has the advantage that the normalization is per-
formed at each time step. It converges to stable solutions and
the norm evoles in a controlled way. It was expected that solu-
tions for a < 0 [negative nonlinear term in Eq. (8)] would also
be achieved with scheme B. However, if the nonlinear term in
Eq. (8) is negative, the norm η grows exponentially and the
scheme B fails. We tested several alternatives, and we have
observed that a particular normalization, which consists of re-
versing Eq. (9), presents the peculiarity to control the growing
of η parameter:

(10)ηn+1 ← ηn∫
d3r |ψn+1|2 .

This procedure defines a new scheme C to obtain numerical so-
lution of Eq. (8), that is valid in the cases that we have negative
cubic term in the nonlinear Schrödinger equation.

So, considering the nonlinear equation

(11)−∂ψ

∂τ
= [−∇2 + V + 8πη|ψ |2 − 2μ

]
ψ,

where V is the harmonic potential, the set of operations needed
to implement this relaxation approach is given by

(12)

ψn+1/3 ← ψn + 
τ
2 [2μ − V − 8πηn|ψn|2]ψn

ψn+2/3 ←OCNψn+1/3

ψn+1 ← ψn+2/3 + 
τ
2 [2μ − V − 8πηn|ψn|2]ψn

ηn+1 ← ηn[
∫

d3x |ψn+1|2]−1

ψn+1 ← ψn+1[
∫

d3x |ψn+1|2]−1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

where ηn < 0 and n refers to the nth time step. In the sec-
ond line of (12), OCN is the evolving operator of ∇2 by the
Crank–Nicolson algorithm with a time step 
τ . Let K ≡ ∇2

in dimensionless spherical coordinates, which is reduced to a
single second-order differential equation in the dimensionless
radial coordinate r̃ , in our case that we are considering just the
s-wave. With j indicating the corresponding radial space-step
grid, this OCN operation on ψ results in

(13)ψn+2/3,j = ψn+1/3,j + 
τ

2
[Kjψn+2/3,j + Kjψn+1/3,j ],

where

(14)Kjψj = ψj+1 − 2ψj + ψj−1

(
r̃)2
+ σ

r̃

ψj+1 − ψj−1

2
r̃
,

with σ = 2. In this numerical calculation, we are using the
von Neumann boundary condition dψ/dr̃ = 0 at r̃ = 0. When
we have the 3D equation for ∇2 in cylindrical symmetry, the
OCN operation on ψ is split in axial and radial parts, with the
Fig. 1. Full numerical results, using the scheme C, for the chemical poten-
tial μ (in units of h̄ω) as a function of the dimensionless η = Na/l0, when
a < 0, for the spherical case (dashed line) and also for a cylindrical case, with
ω1 = ω2 = 2π × 17.5 Hz, ω3 = 2π × 6.8 Hz (solid line). With bullet (spheri-
cal) and with × (cylindrical), we show the results obtained with the relaxation
algorithm presented in Ref. [11], which does not access hyperbolic states.

radial part being the 2D implementation (with σ = 1) of the
above expressions.

About the numerical discretization, we used grid with 1000
points in the space, in the spherical case. In the cylindrical case,
the grid used was 200×200. In both the cases, the time step was

τ = 0.001. The number of grid points was enlarged and the
time step diminished in some cases to improve the precision.

We should emphasize that with this procedure the relaxation
method can be applied to obtain stable solutions of cubic non-
linear Schrödinger equation with negative scattering lengths.
When η < 0, all the stationary solutions (including the hyper-
bolic ones) can be obtained within the same code; in a method
that can easily be extended to obtain dynamical solutions, con-
sidering quite different three-dimensional geometries.

So, following the scheme C, in case that a < 0, we were able
to find both branch solutions for the stationary observables of
the system, as the energy, chemical potential, mean-square ra-
dius, density, etc. Three-dimensional results for the chemical
potential μ, as a function of the η ≡ Na/l0, given by Eq. (3),
are shown in Fig. 1, for a < 0. The results are shown for sym-
metric geometry, as well as for the case with the cylindrical
geometry considered in Ref. [14] (the corresponding frequen-
cies are given in the caption). All the results for the case with
spherical symmetric (dotted line), including the hyperbolic so-
lutions (the maxima for the energies), coincide with previous
results obtained using shooting method [5]. Note that the re-
laxation method presented in Ref. [11] can only reproduce the
results corresponding to minima for the energies. However, as
we show in Fig. 1, with solid line, with the relaxation method
we can also obtain the hyperbolic solutions for asymmetric
cases. Such hyperbolic results (in the non-symmetric case) can-
not be reached either by the shooting method, or by the usual
relaxation method.

The applicability of the procedure is demonstrated by con-
sidering the same set of parameters used in Ref. [14]. The criti-
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Fig. 2. Evolution of convergence of the GP solution, in the spherical case
with negative scattering length. We use the modified version of the relaxation
method, considering several chemical potential parameters μ (in units of h̄ω),
as given inside the figure. As observed, the convergence is improved as we de-
crease μ. τ is given in units of 2/ω.

cal point for the number of particles is obtained when the stable
and unstable branches are meeting. Using this technique we
found the critical constant N |a|/l0 = 0.549, in good agreement
with previous results obtained in Ref. [11]. The critical point is
achieved either by increasing the number of atoms or equiva-
lently the magnitude of the negative scattering length. At this
point, the system collapses. In fact, the collapse was first exper-
imentally observed by Bradley et al. and reported in Ref. [15].

The results shown in Fig. 2 are very illustrative on the effec-
tiveness of the approach, as well as, about the way the scheme C
is working. In Fig. 2, we present, as a function of the imaginary
time τ , results for the parameter Na/l0 related to the number
of particles N , given by the GP Eq. (3). We consider in this fig-
ure the spherical case with negative scattering length, using the
present modified version of the relaxation method. We show re-
sults for several chemical potential parameters μ, from 0 till 1.2
units of h̄ω. With the help of Fig. 1, we can identify the values
of μ corresponding to the hyperbolic states, as well as the ones
corresponding to minima for the energies. We should empha-
size that with the schemes A and B we can only obtain results
for Na/l0 > 0.

The scheme C is a strategy to avoid the numerical instabili-
ties that we observe in the stationary point of the analog model
of scheme A and B, when we consider μ as our input. The inver-
sion of the procedure represented by Eq. (9), given by Eq. (10),
leads us to an algorithm that can reach all the stationary solu-
tions when the nonlinear interaction is negative. The most rele-
vant outcome of this procedure occurs for the unstable branch,
where we have the hyperbolic solutions. A curious aspect of the
results given by the scheme C, when the nonlinear term is neg-
ative, is the fact that the observed convergence (related to the
number of imaginary time steps n) to the correct solution is im-
proved as we decrease the value of μ. As we approach the linear
oscillator (the case where Na/l0 = 0) the convergence slows
down. This implies that the convergence is more sensitive to the
changes of the chemical potential than to the numerical varia-
tion of the wave-function, at each time step n. As the negative
Fig. 3. Chemical potential (in units of h̄ω1) as a function of Na/lρ , where
lρ ≡ √

h̄/(mω1), for the cylindrically symmetrical case (ω1 = ω2). The results,
considering the modified version of the relaxation method, are shown by solid
line. With dashed line, we have the limiting analytical solution.

Fig. 4. Mean-square radii 〈z2〉 (upper frame) and 〈x2 + y2〉 (lower frame), in
units of l2ρ ≡ h̄/(mω1), are shown as functions of Na/lρ , for the cylindri-
cally symmetric case (ω1 = ω2). The numerical results are obtained with the
scheme C.

nonlinear term becomes larger, the convergence is improved;
but we also observe a fast dumped oscillation with increasing
amplitude. This numerical behavior of the convergence of the
solutions for η, as a function of the imaginary time, needs a
more detailed analysis, which is out of the scope of the present
work.

For cylindrically symmetric case with ω3 = 0, and ω1 = ω2,
we show in Figs. 3 and 4, respectively, results for the chemi-
cal potential and the mean-square-radius, obtained by consid-
ering the scheme C. In Fig. 3, our results for μ are shown
by solid line. The branch of the hyperbolic solutions (lower
branch) of this curve converges asymptotically to the corre-
sponding analytical solution, shown by dashed line, which is
given by η = Na/lρ = −18.94/[8π

√−2μ ] [18]. The results
of Ref. [17] use a NPSE (non-polinomial Schrödinger equation)
and is an approximate solution that gives pretty good results for
the stable solutions and also for the hyperbolic ones near the
bending of the bifurcation. However, the hyperbolic solutions
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Fig. 5. Chemical potential (in units of h̄ω), as a function of Na/l0, for a cylin-
drically symmetric GP equation with negative two body scattering length and
with quintic nonlinear term, obtained using the relaxation method with the
scheme C. The frequency relations are given by ω1 = ω2 = 2π × 17.5 Hz and
ω3 = 2π × 6.8 Hz. The strengths g3 of the quintic term, corresponding to the
curves, are given inside the figure.

of [17], with weak nonlinearity, are not correct even topologi-
cally: the eigenvalues go to a constant when they should go to
−∞.

In Fig. 4, we have two frames considering the mean-square
radius in the axial direction as well as in the perpendicular di-
rection. The stable branches, in both frames, are the upper part
of the plots. Note that such stable branch of 〈x2 + y2〉 goes
to one, in units of h̄ω1, when Na → 0. As the system is not
trapped in the z-direction, 〈z2〉 diverges as Na → 0. In both
the cases, the mean-square radius for the unstable branches col-
lapse to zero as Na → 0.

To demonstrate the applicability of the approach given by the
scheme C in a case that we have bifurcation, we also consider
a positive quintic term in Eq. (8), with η < 0. This possibility,
of an extended GP formalism with a quintic nonlinear term,
can occur for some hypothetical atomic system, with attractive
two-body and repulsive three-body interactions, as discussed in
Refs. [16,19]. The corresponding equation is given by

(15)−∂ψ

∂τ
= [

H0 + 8πη|ψ |2 + 2(4πη)2g3|ψ |4 − 2μ
]
ψ,

where g3 is related to the strength of the quintic term. By us-
ing the scheme C, we have first verified a perfect agreement
of the actual results with the ones obtained in Ref. [19], in a
spherically symmetric case. Next, we consider the cigar-type
cylindrical symmetry considered in the experiments described
in Ref. [14], as given in the caption of Fig. 1. The final numer-
ical results are shown in Fig. 5, for several values of g3 (given
inside the figure). As observed, we have a pitchfork bifurcation
when 0 < g3 < 0.0168. Note that this upper value of g3 is lower
than the upper value (0.0183) obtained in a spherically symmet-
ric case [19]. So, with the present relaxation method we are able
to reach all the stationary solutions of an equation with negative
cubic and positive quintic nonlinear terms as the Eq. (15), with
precise definitions of the critical limits for the observables. By
following Refs. [16,19], one can easily extend the present ap-
proach to obtain several other stationary, as well as dynamical
observables, in a non-spherically symmetric case; and also con-
sider non-conservative cases.

About the applicability of the scheme C to the case that we
have included a positive quintic term, we should point out that
our results shown in Fig. 5 are in a region of parameters where
the nonlinearity is dominated by the negative cubic term (with
η = Na/l0 < 0). As observed from Eq. (15), the effective non-
linear potential that we have is given by

−8π |η||ψ |2[1 − 4π |η|g3|ψ |2],
such that the quintic term is dominant only when g3|ψ |2 >

1/[4π |η|]. By replacing |ψ | by its maximum value, |ψ |max, we
obtain the following sufficient condition for the applicability of
the scheme C:

(16)g3 <
1

4π |η||ψ |2max
.

But, it is easy to verify that this condition is satisfied for all the
results presented in Fig. 5, as 0 � g3 � 0.02. For larger g3 there
is no particular interest in the solutions (see Fig. 5), within the
motivations of the present work, because there is no possibility
of occurrence of bifurcations (there is no maxima for the en-
ergies). And, in the case that the condition (16) is violated, as
the effective nonlinear interaction becomes positive, we already
know that we should apply the scheme A or B. All these results
are numerically confirmed.

In conclusion, we demonstrate how the relaxation algorithm
can be suitable modified in order to achieve all the stationary so-
lutions of the Gross–Pitaevskii equation for negative scattering
length (negative nonlinear cubic term), including the hyperbolic
ones. Determination of unstable branches provided precise crit-
ical numbers also in the non-symmetric cases. An example of
application of the method in case that we have attractive cubic
term and repulsive quintic term is provided to test the approach
for a case that one has higher order nonlinearity. As shown, the
scheme C is appropriate to obtain all the solutions, including the
hyperbolic ones, when the effective nonlinear interaction is neg-
ative. From the other side, as the scheme B can be implemented
by a minimal modification in the algorithm, one can reach all
the stationary solutions (including the hyperbolic ones) for both
signs of the effective nonlinear interaction, with the same nu-
merical code. Besides that, the approach can be easily extended
to obtain dynamical solutions. We believe that the proposed
modified relaxation algorithm can also be used to obtain solu-
tions to many other problems that can be described by nonlinear
differential equations. It is certainly a valuable alternative tool
for determining precisely points of instability and bifurcations.
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