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Recent experimental and theoretical advances in the creation and description of bright
matter wave solitons are reviewed. Several aspects are taken into account, including
the physics of soliton train formation as the nonlinear Fresnel diffraction, soliton-soliton
interactions, and propagation in the presence of inhomogeneities. The generation of
stable bright solitons by means of Feshbach resonance techniques is also discussed.
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1. Introduction

Solitons are localized waves that propagate without losing their shape due to equi-

librium between dispersion and nonlinearity effects.1–4 Solitons appear in such

physical systems as shallow water, fiber optics and plasma waves. They are typi-

cally described by nonlinear equations as the Korteweg–de Vries (KdV) for systems

with small dispersion (e.g., shallow water waves), or by the nonlinear Schrödinger

(NLS) equation for envelopes of wave packets for the lowest order dispersion and

nonlinear effects (e.g., fiber optics and other media). The equation for the “wave
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function” of Bose–Einstein condensates (BEC) has the form of multidimensional

NLS equation with a trap potential. It is usually known as the Gross–Pitaevskii

(GP) equation. In quasi-one-dimensional case, the dynamics of the wave function

can be modeled by a one-dimensional (1D) NLS equation, leading to different forms

of soliton solutions. Solitons can be classified as bright or dark ones. A bright soliton

represents a propagation of wave packets without changing its form. This type of

soliton exists for the focusing cubic nonlinearity term corresponding to BEC with

attractive interactions between atoms. A dark soliton corresponds to a moving hole

on a background that can occur in case of the defocusing cubic nonlinearity, i.e. in

BEC with repulsive interactions between atoms.

Bose–Einstein condensates (BEC) were predicted theoretically 80 years ago.5,6

Only in 1995, after intense experimental research with magnetically trapped weakly

interacting atoms, it was reported as evidence that the Bose–Einstein condensation

was achieved.7–9 Since Bose–Einstein condensation is related to the occurrence of

macroscopic occupation of a single quantum state, it demonstrates typical quan-

tum mechanical features and, hence, the condensate’s motion is often also named

as a “matter wave”. At zero temperature such condensates of trapped atomic sys-

tems can be described in the mean field approximation by the Gross–Pitaevskii

(GP) equation10 (which can be regarded as a non-linear version of the Schrödinger

equation for the condensate “wave function” Ψ(r, t)), given by

i~
∂Ψ

∂t
= − ~

2

2m
∇2Ψ + Vext(r)Ψ + g|Ψ|2Ψ . (1)

In the above, m is the single atom mass; the condensate wave function Ψ ≡ Ψ(r, t)

is normalized to the number of atoms N ,
∫

|Ψ|2dr = N ; (2)

Vext(r) is the external trapping potential that normally can be approximated by a

general form of a non-symmetric harmonic oscillator potential,

Vext(r) =
m

2
(ω2
xx

2 + ω2
yy

2 + ω2
zz

2) ; (3)

and

g ≡ 4π~
2as
m

(4)

is the effective coupling parameter associated to the atom-atom interaction, as being

the s-wave scattering length, and interaction is attractive (repulsive) for as < 0

(as > 0). For a condensate in a symmetric trap, with cubic and quintic nonlinear

terms, see also Ref. 11.

Since the production of BEC, it was a challenge to demonstrate that solitons

could also propagate in such media. The first observation of dark solitons (in BEC

with as > 0) was reported in Ref. 12, followed by experimental observations given in

Refs. 13 and 14. Bright matter wave solitons (BS) in BEC can occur when as < 0.
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They are harder to observe than dark solitons due to the occurrence of collapse

of the system for sufficiently high number of atoms. Nevertheless, in 2002 two

groups, one at Ecole Normale Supériore in Paris15 and another at Rice University,16

showed almost simultaneously the generation and propagation of solitons in 7Li

condensates. Both experiments are very similar — the main difference is that in the

Paris experiment there was much less number of atoms so that only one soliton was

formed and its motion in expulsive “anti-trapping” potential was studied, whereas

in the Rice experiment trains of several solitons were produced and these trains

oscillated in a weak attractive trapping potential. To be definite, we shall describe

here in some detail the Rice experiment.16,17

We shall first discuss atomic properties of 7Li. As all alkali atoms, the electronic

state of 7Li has zero orbital angular momentum and spin momentum S = 1/2 so

that the total electronic angular momentum is equal to J = 1/2. As a result, there

is no fine structure of atomic levels due to spin-orbit interaction, but levels have a

hyperfine structure originated from the interaction of electronic angular momentum

with nuclear spin I = 3/2 (or, more exactly, an interaction of electronic and nuclear

magnetic moments) of 7Li nucleus. The coupling between the electronic and nuclear

spins leads to two possible values F = I±1/2 of the total angular momentum F = 2

and F = 1. Each level in this doublet is (2F + 1)-fold degenerate and the hyperfine

(hf) splitting between these two levels is given by the Fermi formula18

∆Ehf = EI+1/2 −EI−1/2 =
8π

3

2I + 1

I
µµBψ

2
e(0) , (5)

where µB = e~/2me is the Bohr magneton, µ is the nucleus magnetic moment,

and ψe(0) is the normalized valence electron s-wave function at the nucleus. The

magnetic moment of 7Li nucleus is positive (µ = 3.256µN , µN is the nuclear mag-

neton), hence the ground state corresponds to F = 1 and the hyperfine split-

ting between this level and the higher level F = 2 of the doublet is equal to

νhf = ∆Ehf/h = 804 MHz in frequency units or 3.85 K in temperature units.

In the presence of a weak magnetic field B these degenerate levels are split into

Zeeman multiplets with the energy intervals between sublevels

∆E = 〈F,mF |2µBJzB|F,mF 〉 = gLµBmFB , (6)

where we neglect the nucleus magnetic moment due to µN � µB , and mF is the

eigenvalue of Fz . gL is the Landé factor given by

gL =
F (F + 1) + J(J + 1) − I(I + 1)

2F (F + 1)
. (7)

Correspondingly, the mean magnetic moment of the atom is equal to

µ̄z = −∂∆E

∂B
= −gLµBmF . (8)

For 7Li atom, we have gL(F = 2) = 1/4 and gL(F = 1) = −1/4. Thus, we see that

the states |2, 2〉, |2, 1〉 and |1,−1〉 can be trapped by the magnetic trap with the
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minimum of the field B, whereas the states |2,−2〉, |2,−1〉 and |1, 1〉 are repelled

from such a field.

Now, in the experiments the condensation of large enough number of atoms with

negative interaction constant g < 0 (that is with negative scattering length as < 0)

is followed by its collapse with loss of majority of the atoms. Therefore one has to

condense atoms with positive interaction constant g > 0 (or as > 0) and after that

reverse its sign by changing the atom-atom interaction constant from repulsive to

attractive. This can be achieved by means of a Feshbach resonance.19 A Feshbach

resonance occurs when the energy of a pair of colliding atoms matches with the

energy of a vibrational state of a diatomic molecule. When one varies an external

magnetic field B, the Zeeman energy (5) of atoms changes relative to the energy of

a molecule because its magnetic moments differs from that (8) of atoms. Near the

resonance the scattering length as as a function of the driving magnetic field B can

be approximated as

as = ab

(

1 − ∆

B −B0

)

, (9)

where ∆ denotes the width of the resonance. Hence, the external magnetic field

allows one to tune the scattering length continuously from as < 0 to as > 0. In 7Li

atoms a Feshbach resonance takes place for the state |F,mF 〉 = |1, 1〉 at B0 = 725 G

and a zero crossing of the scattering length as is at B = 550 G. However, as we saw

above, this state is not magnetically trappable, and it is obtained in the final stage

of the experiment after several preliminary stages of preparation of the condensate

which are described briefly below.

Lithium at room temperature is solid, so it must be heated on up to 900 K to be

in the gaseous phase. In the experiment described in Ref. 16 the Lithium sample is

diffused through a Zeeman slower and loaded to a magneto-optical trap where the

temperature is around 200 µK. These atoms are transferred to a Ioffe–Pritchard

magnetic trap in the |F = 2,mF = 2〉 spin state and cooled by evaporation until

a temperature of around 1 µK. The atoms are transferred to an optical trap with

infrared Nd:YAG laser (1064 nm) focused to a 1/e2 intensity radius of 47 µm and

power of up to 750 mW for radial confinement. Two cylindrically focused doubled

Nd:YAG beams (532 nm) 250 µm apart provide axial confinement. The magnetic

trap is then turned off and a uniform magnetic field is ramped to 700 G. The

atoms are turned from |F = 2,mF = 2〉 state to |F = 1, mF = 1〉 state by an

adiabatic microwave sweep of 15 ms and 1 MHz width at ≈ 820 MHz. At that

magnetic field the scattering length has the large and positive value of as ≈ 200a0,

where a0 is the Bohr radius that facilitates collisions, since thermalization rate

scales as a2
s. The intensity of the infrared red is then halved. This resulted in trap

frequencies ω⊥ = ωx = ωy = 2π · 640 Hz, ωz = 2π · 3.2 Hz. The gas cools

by evaporation with collisions enhanced by a large scattering length, generating

a stable BEC. Absorption images indicates that condensates are formed up to ∼
3×105 atoms. Finally, bright solitons are generated by turning the scattering length



September 1, 2005 14:31 WSPC/140-IJMPB 03227

Dynamics of Bright Matter Wave Solitons in a Bose–Einstein Condensate 3419

Fig. 1. Repulsive interactions between solitons, as obtained in the experiment described by
Strecker et al.16 The images shown a soliton train near the turning points and near the cen-
tre of the oscillation.

to near 547 G for which a ≈ −3a0, where as is small and negative (see Fig. 1).

After their generation, the solitons oscillate within an amplitude of ∼ 370 µm and

period of 310 ms. Image distortion limits the precision of the number of atoms

measurement. Solitons have a maximum number of ∼ 6000 atoms, in agreement

with the maximum allowed by theory.20–22 Summing up the total number of atoms

in the train obtained was less than 6 × 104, indicating that a strong loss occurred

in short time compared with the experimental time scale of 30 ms. This losses are

caused by collapse and are still to be quantitatively estimated. It was observed that

an approximately linear relation exists between the number of solitons produced and

the release time from the end caps from ∆t = 0 (four solitons) to ∆t = 35 ms (ten

solitons), indicating that the number should vary with the initial size of condensate.

In the following we describe the theory of bright matter waves solitons in elon-

gated cigar-shape trap with attractive atom-atom interactions.

2. One-Dimensional Reduction of Gross–Pitaevskii Equation for

Condensates in Cigar-Shaped Trap

When a condensed atomic system is confined in a cigar-shaped trap as given in

Eq. (3), with the frequency relations such that ωx = ωy ≡ ω⊥ and λ ≡ ωz/ω⊥ � 1,

then it is natural to expect that there are situations when transverse degrees of

freedom become irrelevant and the GP equation can be reduced to an effective 1D

equation. We shall consider this possibility in this section with the aim to clarify

characteristic values of the parameters involved into this problem.

If the equation under consideration admits formulation in the form of the Hamil-

tonian least action principle, with the action functional

S =

∫

Ldt , L =

∫

Ld3r , (10)

then the standard method to eliminate irrelevant degrees of freedom will aver-

age the Lagrangian density L over properly determined space regions or time

intervals.



September 1, 2005 14:31 WSPC/140-IJMPB 03227

3420 F. Kh. Abdullaev et al.

The GP equation admits the Hamiltonian principle formulation with the La-

grangian density

L =
i~

2
(Ψ∗

tΨ − ΨtΨ
∗) +

~
2

2m
|∇Ψ|2 + Vext(r)|Ψ|2 +

g

2
|Ψ|4 , (11)

where Ψt ≡ ∂Ψ/∂t. Considering this equation with the corresponding Lagrange

equation,

d

dt

∂L
∂Ψ∗

t

+ ∇ ∂L
∂(∇Ψ∗)

− ∂L
∂Ψ∗

= 0 , (12)

one obtains Eq. (1).

In order to obtain a condition under which the transverse degrees of freedom

become irrelevant, we have to determine the values of the parameters such that the

transverse motion is decoupled from the longitudinal one. A simple inspection of

Eq. (1) shows that this aim can be achieved when the characteristic energies of the

transverse excitations are much greater than the energy from the nonlinear term.

This condition can be written as

~
2

ms2⊥
∼ mω2

⊥s
2
⊥ � g|Ψ|2 , (13)

where s⊥ is the size of the condensate in the transverse direction. From this, we

obtain

s⊥ ∼ l⊥, l⊥ ≡
√

~

mω⊥
. (14)

By taking into account Eq. (4) and considering an estimate for the density |Ψ|2 as

|Ψ|2 ∼ N/(s2⊥s‖)), where s‖ is the order of magnitude of the size of the condensate

in the longitudinal direction, we obtain the condition

N |as|
s‖

� 1 . (15)

It is clear that the estimate (14) means that atoms occupy the ground state of

the harmonic motion with the amplitude l⊥ in the transverse oscillator potential,

that is, the energies of the longitudinal motion as well as the nonlinear contribution

are not high enough to excite the higher levels of the transverse motion in ther-

modynamic equilibrium. In our case, the transverse motion of atoms is quantized

and it reduces to the lowest energy level of the harmonic motion in the transverse

potential. Since the transverse motion is reduced to the ground state only so that

there is no change of transverse wave function along the cigar axis, we can factorize

the whole condensate wave function:

Ψ = φ(x, y)ψ(z, t) , (16)

where

φ(x, y) =
1√
π l⊥

exp

(

−x
2 + y2

2l2⊥

)

(17)
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is the ground state wave function of the transverse motion. (We emphasize that this

is not a “variational ansatz” with the Gaussian function introduced for convenience

in the calculations; here φ is the exact ground state wave function, with other states

of transverse motion neglected due to Eq. (15).) Thus, we can substitute Eqs. (17)

and (16) into Eqs. (11) and (10) and integrate over the transverse xy plane to

obtain the expression for the action in terms of an effective only 1D Lagrangian:

S =

∫

Ldt , L =

∫

L1Ddz , (18)

where, omitting an irrelevant constant term, we have

L1D =
i~

2
(ψ∗
t ψ − ψtψ

∗) +
~

2

2m
|ψz|2 +

1

2
mω2

zz
2|ψ|2 +

g

4πl2⊥
|ψ|4 . (19)

The Hamiltonian principle states that the evolution of ψ(z, t) is governed by the

Lagrange equation (12), which yields the 1D NLS equation

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂z2
+

1

2
mω2

zz
2ψ +

g

2πl2⊥
|ψ|2ψ , (20)

with the normalization condition
∫

|ψ|2dz = N . (21)

Next, we can estimate the axial size s‖ of the condensate. We may consider the

situation when the condensate is confined by attractive forces between atoms rather

than by the axial trap potential. In this case, its length in the longitudinal direction,

s‖, can be estimated by equating the dispersive and nonlinear terms:

~
2

ms2‖
∼ g

l2⊥
|ψ|2 ∼ ~

2|as|
ml2⊥

N

s‖
, or s‖ ∼ l2⊥

N |as|
. (22)

Actually, this is the width of the bright soliton formed by the condensate. Indeed,

neglecting the axial trap (ωz = 0), Eq. (20) has the well-known solution

ψ(z, t) =

√

|as|
2

N

l⊥
exp

[

i
mv

~
z − i

~

(

mv2

2
− ~

2κ2

2m

)

t

]

1

cosh[κ(z − vt)]
, (23)

where

κ =
|as|N
l2⊥

∼ 1

s‖
(24)

is the inverse width of the soliton and v its velocity. Hence, Eq. (15) implies phys-

ically that the soliton width must be much greater than the radial size of the

condensate, l⊥/s‖ � 1. Another convenient form of this condition, obtained using

Eq. (22), is given by N |as|/l⊥ � 1.
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We can consider the propagation of bright soliton along the trap if its energy

is much greater than the potential energy due to the potential at distances ∼ s‖.

That is

~
2

ms2‖
� mω2

zs
2
‖ , or s‖ � l‖ =

√

~

mωz
. (25)

In this case, using Eq. (22), we obtain

N |as|
l⊥

� l⊥
l‖

=

√

ωz
ω⊥

=
√
λ . (26)

Thus, if the conditions

√
λ� N |as|

l⊥
� 1 (27)

are fulfilled, the 1D NLS equation can be applied to describe bright solitons moving

along a cigar-shape trap. These conditions are to be considered as rough estimates

for the applicability of the 1D reduction from three-dimensional (3D) systems in

elongated traps. It has been shown numerically in Ref. 20 that a 1D reduction,

as well as the ansatz given by Eqs. (17) and (19), is still valid for the cases with

N |as|/l⊥ ∼ 0.19 with λ ranging from zero up to 0.4. It is also valid for cases

with strong nonlinearity as N |as|/l⊥ ∼ 0.38 with λ = 0, as justified by multi-scale

expansions in Ref. 20.

Note that for condensates that are confined in cigar-shaped traps, with the

number N of atoms such that N |as|/l⊥ > 0.676, the system collapses20,22 and the

validity of the 1D reduction completely breaks down in agreement with Eq. (27).

An improved variational approach, correct beyond the 1D approximation, was sug-

gested in Ref. 23. Its application to bright solitons will be considered in Sec. 6.

3. Formation of Bright Soliton Trains at the Sharp Edge of

the Condensate

Formation of bright soliton trains in nonlinear wave systems is often explained as

a result of modulational instability, where selection of the most unstable mode is a

result of interplay of interference and nonlinear effects (this approach was applied

to BEC in e.g. Refs. 24 and 25). Most clearly this process can be seen in the

vicinity of a sharp edge of density distribution of BEC. In this case, at linear stage

of evolution the linear diffraction provides an initial modulation of the wave and

further combined action of interference and nonlinear effects leads to the formation

of soliton trains. Without nonlinear effects, such kind of time evolution of a sharp

wave front would be a temporal counterpart of usual spatial Fresnel diffraction and

therefore soliton train formation at the sharp front of nonlinear wave can be called

a nonlinear Fresnel diffraction.

Similar formation of oscillatory structures at sharp wave front or after wave

breaking in modulationally stable systems described by the Korteweg-de Vries equa-

tion is well known as a “dissipationless shock wave” (see e.g. Ref. 26). Its theoretical
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description is given in Refs. 27 and 28, in the framework of Whitham theory of non-

linear wave modulations,29 where the oscillatory structure is presented as a modu-

lated nonlinear periodic wave which parameters change little in one wavelength and

one period. Then slow evolution of the parameters of the wave is governed by the

Whitham equations obtained by averaging of initial nonlinear wave equations over

fast oscillations of the wave. Description of shock waves generated in BEC with

repulsive interaction between atoms was given in Ref. 30. Its application to BEC

with attractive interaction was given in Ref. 31 and this theory will be explained

here.

As in Sec. 2 we suppose that condensate is confined in a very elongated cigar-

shaped trap whose axial frequency ωz is much less than the radial frequency ω⊥. In

the first approximation, we can neglect the axial trap potential and suppose that

condensate is contained in a cylindrical trap (ωz = 0) and its initial density distri-

bution has a rectangular form. Evolution of BEC is governed by 3D GP equation (1)

which under condition (27) can be reduced to 1D NLS equation (20)

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂z2
+

g

2πl2⊥
|ψ|2ψ ,

∫

|ψ|2dz = N . (28)

It is well known (see e.g. Ref. 26) that a homogeneous distribution with linear

density n0 = |ψ(z = 0, t = 0)|2 = const, described by Eq. (28) with negative g

(as < 0) is unstable with respect to self-modulation with an increment of instability

equal in the present notation to

Γ =
~K

2ml⊥

√

8|as|n0 − (l⊥K)2 , (29)

where K is a wavenumber of small periodic modulation. The most unstable mode

has the wavenumber

Kmax = 2

√

|as|n0

l⊥
(30)

and the corresponding increment is equal to

Γmax = 2|as|n0ω⊥ . (31)

This means that after the time ∼ 1/(|as|n0ω⊥) the homogeneous condensate splits

into separate solitons (diffraction fringes) and each soliton (diffraction fringe) con-

tains about Ns ∼ n0/Kmax atoms. Hence, the condition of applicability (27) of 1D

Eq. (28) to describe the formation of solitons can be expressed as

n0|as| � 1 , (32)

which means that the instability wavelength ∼ 1/Kmax is much greater than

the transverse radius s⊥ of BEC. For a typical value of the scattering length

|as| ∼ 10−9 − 10−8 m this condition is fulfilled, if N ∼ 104 and the initial length of

the condensate is about L ∼ 300 µm so that n0 = N/L ∼ 3 · 107 m−1. For greater

values of n0 the condition (32) is not satisfied and the transverse motion has to
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be taken into account which may lead to the collapse of BEC inside each separate

soliton. Therefore we shall confine ourselves to the BEC described by the 1D NLS

equation under supposition that the initial distribution satisfies the condition (32).

To simplify the notation, we transform (28) to dimensionless variables τ =

2(|as|n0)
2ω⊥t, ζ = 2|as|n0z/l⊥, ψ =

√

2|as|n0u, so that Eq. (28) takes the form

iuτ + uζζ + 2|u|2u = 0 , (33)

and u is normalized to the effective length L of the condensate
∫

|u|2dζ = L/l⊥
measured in units of l⊥. We study here the process of formation of solitons at the

sharp boundary of initially rectangular distribution. Since this process develops

symmetrically at both sides of the rectangular distribution, we can confine our-

selves to the study of only one boundary. This limitation remains correct until the

nonlinear waves propagating inside the condensate collide at its center. If the ini-

tial distribution is long enough, this time is much greater than the time of solitons

formation. Thus, we consider the initial distribution in the form

u(ζ, 0) =

{

γ exp(−2iαζ) , for ζ < 0

0 , for ζ > 0 ,
(34)

where γ is the height of initial step-like distribution and α characterizes the initial

homogeneous phase (i.e., initial velocity of the condensate).

Due to dispersion effects described by the second term in Eq. (33), the sharp

front transforms into slightly modulated wave which describes usual Fresnel diffrac-

tion of atoms. (As was noted above, in our case the diffraction pattern evolves with

time rather than is “projected” on the observation plane.) The linear stage of evo-

lution is followed by the nonlinear one in which a combined action of dispersion

and nonlinear terms yields the pattern which can be represented as a modulated

nonlinear periodic wave or, in other words, a soliton train. We suppose that this

soliton train contains large enough number of solitons so that the parameters of the

modulated nonlinear wave change little in one wavelength and one period. Then,

in framework of Whitham theory, the density of BEC can be approximated by a

modulated periodic solution of Eq. (33) (see Ref. 26)

n = |u(ζ, τ)|2 = (γ + δ)2 − 4γδ sn2(
√

(α− β)2 + (γ + δ)2 θ,m) , (35)

where sn(x,m) is the Jacobi elliptic function,

θ = ζ − V τ , V = −2(α+ β) , (36)

m = 4γδ/[(α− β)2 + (γ + δ)2] , (37)

the parameters α and γ are determined by the initial condition (34), and β and δ

are slow functions of ζ and τ . Their evolution is governed by the Whitham equation

∂(β + iδ)

∂τ
+ v(β, δ)

∂(β + iδ)

∂ζ
= 0 , (38)
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where Whitham velocity v(β, δ) is given by the expression

v(β, δ) = −2(α+ β) − 4δ[γ − δ + i(β − α)]K

(β − α)(K − E) + i[(δ − γ)K + (δ + γ)E]
, (39)

K = K(m) and E = E(m) being the complete elliptic integrals of the first and

second kind, respectively. Since our initial condition (34) does not contain any

parameters with dimension of length, the parameters β and δ can only depend on

the self-similar variable ξ = ζ/τ . Then Eq. (38) has the solution

ζ

τ
= ξ = v(β, δ) (40)

with v(β, δ) given by (39). Separation of real and imaginary parts yields the formulas

ζ

τ
= −4β − 2(γ2 − δ2)

β − α
, (41)

(α− β)2 + (γ − δ)2

(α− β)2 + γ2 − δ2
=

E(m)

K(m)
, (42)

which together with Eq. (37) determine implicitly dependence of β and δ on ξ = ζ/τ .

It is convenient to express this dependence in parametric form

β(m) = α− γ
√

4A(m) − (1 +mA(m))2 , δ(m) = γmA(m) , (43)

where

A(m) =
(2 −m)E(m) − 2(1 −m)K(m)

m2E(m)
. (44)

Substitution of these expressions into Eqs. (35) and (36) yields the density n as a

function of m. Since the space coordinate ζ defined by Eq. (41) is also a function

of m at given moment τ , we arrive at presentation of dependence of n on ζ in

parametric form. The limit m→ 0 corresponds to a vanishing modulation, and this

edge point moves inside the condensate according to the law

ζ− = (−4α+ 4
√

2γ)τ . (45)

The other edge with m→ 1 moves according to the law

ζ+ = −4ατ , (46)

and corresponds to the bright solitons (or fringes of the nonlinear diffraction pat-

tern) at the moment τ . The whole region ζ− < ζ < ζ+ describes the oscillatory

pattern arising due to nonlinear Fresnel diffraction of the BEC with an initially

sharp boundary at ζ = 0.

To check the above analytical approach, we have performed numerical simulation

of 1D and 3D GP equations. The 1D density distributions calculated numerically

from Eq. (33) and given by the above analytical theory are shown in Fig. 2. We see

excellent agreement between the theoretical and numerical predictions of the height

of the first soliton generated from initially step-like pulse, but its position given by
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Fig. 2. Density distributions of BEC, calculated by numerical solution of 1D GP equation (33)
and given by Whitham theory, with initial step-like wave function (34), with γ = −1, α = 0.
Obtained from Ref. 31.

analytical formula is slightly shifted with respect to numerical results. This is a

well-known feature of asymptotic Whitham approach27,28 of which accuracy in the

prediction of location of the oscillatory pattern cannot be much better than one

wavelength. Thus, we see that the above theory reproduces the numerical results

quite well for period of time τ ' 2. For much greater time values some other

unstable modes different from the one-phase periodic solution (35) can also give

considerable contributions into wave patterns. Nevertheless, the qualitative picture

of soliton pattern remains the same.

For 3D numerical simulation, the GP equation (1) is written in a dimensionless

form in terms of the following non-dimensional variables: x = l⊥x
′, y = l⊥y

′,

z = l⊥z
′, t = 2t′/ω⊥, ψ = (N1/2/l

3/2
⊥ )ψ, so that Eq. (1) takes the form

iψt = −∆ψ + r2ψ − 8πN |as|
l⊥

|ψ|2ψ , (47)

where the primes are omitted for convenience in the notation and the normalization

condition is
∫

|ψ|22πrdrdz = 1, r2 = x2 + y2. Evolution of the density distribu-

tion ρ(z) =
∫∞

0 |ψ(r, z)|22πrdr along the axial direction is shown in Fig. 3 for the

values of the parameters corresponding to the experiment of Ref. 16 (as = −3a0,

ω⊥ = 2π · 640 Hz, L = 300 l⊥) except for the number of atoms which was chosen to

beN = 5·103 in order to satisfy the condition (32) so that |as|n0 = 1.7·10−3. We see

that diffraction (soliton) pattern arises after the dimensionless time t ' 400 which

corresponds after appropriate scaling transformation to τ ' 2 in Fig. 2. The width

of solitons in Fig. 3 also agrees with the width predicted by 1D analytical theory.

The spatial distribution of the condensate density |ψ(r, z)|2 is illustrated in Fig. 4.

The 3D nonlinear interference pattern is clearly seen. For greater values of the con-

densate density, when 1D theory does not apply, numerical simulation demonstrates
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Fig. 3. Density distributions of BEC ρ(z) along axial direction for different moments of time
calculated by numerical solution of 3D GP equation (47) with cylindrical initial distribution.
Obtained from Ref. 31.
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t = 400. Obtained from Ref. 31.
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a similar evolution of the diffraction pattern up to the moment when collapse starts

in each separate soliton. Thus, the formation of solitons in the experiment16 with

large initial number of atoms N ' 105 goes through collapses with loss of atoms

until the remaining atoms can form stable separate soliton-like condensates. The

present theory emphasizes the importance of the initial stage of evolution with

formation of the nonlinear Fresnel diffraction pattern.

Formation of soliton trains in BEC confined in a cigar-shaped trap has also been

studied numerically in Refs. 24 and 25. The results of 1D simulation of Ref. 25 agree

qualitatively with theory presented in Ref. 31. In the numerical results obtained in

Ref. 24 strong losses were introduced to prevent fast collapse of BEC with large

number of atoms. Nevertheless, formation of soliton trains was also observed.

The above theory is correct for evolution time much less than the period of

oscillations 2π/ωz in the axial trap. When the axial trap is taken into account,

solitons acquire velocities in the axial direction even if the initial phase is equal

to zero. The number of solitons produced ultimately from some finite initial BEC

distribution can be found by means of quasiclassical method applied to an auxiliary

spectral problem associated with the NLS equation (33) in the framework of the

inverse scattering transform method.28,32 If the initial wave function is represented

in the form u0(ζ) =
√

n0(ζ) exp(iφ0(ζ)), then the total number of solitons is equal

approximately to

Ns =
1

π

∫

√

n0(ζ) +
v2
0(ζ)

4
dζ − 1

2
, (48)

where v0(ζ) = ∂φ0(ζ)/∂ζ is the initial velocity distribution of BEC. If there is no

imprinted initial phase in BEC, then the total number of solitons is given by

Ns =

√

2|as|
πl⊥

∫

|Ψ|dz , (49)

which is in dimensional units, neglecting the “one-half” term of Eq. (48).

In the experiments, the initial stage is usually obtained by a sudden change of

the sign of the scattering length from positive to negative, so that initial density

distribution has, for large enough number of atoms, the Thomas–Fermi form

|Ψ|2 =
3N

4Z

(

1 − z2

Z2

)

, (50)

where Z is the Thomas–Fermi half-length of the condensate. Then the substitution

of Eq. (50) into Eq. (49) gives

Ns =
√

3N |as|L/(4l⊥) , (51)

where L = 2Z is the total length of the condensate. Up to a constant factor, this

estimate coincides with the one obtained in Ref. 24 by division of L by the instability

wavelength 1/Kmax. Note that this estimate includes also very small solitons which

cannot be observed in real experiments so that it must be considered as an upper

limit of the number solitons which can be produced from a given initial distribution.



September 1, 2005 14:31 WSPC/140-IJMPB 03227

Dynamics of Bright Matter Wave Solitons in a Bose–Einstein Condensate 3429

The same property of this kind of estimate for the number of dark solitons has been

observed in comparison of analytical theory with numerical simulations in Ref. 32.

The axial potential mainly influences velocities of solitons so that the above estimate

can be applied to the condensate in a cigar-shape trap under the condition that

inequality (32) is fulfilled.

4. Adiabatic Formation of Solitons in BEC with Time Dependent

Atomic Scattering Length

A powerful tool for generating and managing matter soliton trains can be provided

by variation of the effective nonlinearity, as shown in Ref. 33. In practical terms

it can be achieved by means of variation of the s-wave scattering length as, using

Feshbach resonance techniques.34 The time dependent scattering length as(t) is

given by replacing B in Eq. (9) by B(t) where B(t) is the time-dependent external

magnetic field, ∆ is the width of the resonance and B0 is the resonant value of

the magnetic field. Feshbach resonances have been observed in 23Na at 853 and

907 G with ∆ = 1 G (Ref. 35), in 7Li at 725 G with ∆ = 10 G (Ref. 36), and

in 85Rb at 164 G with ∆ = 11 G (Ref. 37). We shall show here that in quasi-

one-dimensional geometry an initially weak modulation of the condensate can be

amplified by means of proper variation of the scattering length. As a result, the

condensate with as(t) < 0 evolves into a sequence of bright solitons.

We start again with 1D Eq. (28) which we transform to the form

iuτ + uζζ + 2g(τ)|u|2u = 0 , (52)

where now τ = 2(|ab|n0)
2ω⊥t, ζ = 2|ab|n0z/l⊥, ψ =

√

2|ab|n0u, u is normalized to

the number of atoms, and

g(τ) =
as(t)

ab
. (53)

We suppose that the initial wave function u(ζ, 0) is modulated along the cigar axis

with the wavelength L of modulation much less than the longitudinal dimension

of the condensate. Therefore, at this stage we neglect the smooth trap potential

and impose cyclic boundary conditions. Then the initial wave function can be ap-

proximated well enough by exact periodic solutions of Eq. (52). We are interested

in the evolution of such solutions due to a slow change of g(τ) with time. At the

same time we suppose that the total time of adiabatically slow change of g(τ) is

much less than the period of soliton oscillations in the trap potential so that we

can neglect the influence of the trap potential on the motion of solitons during

the formation of soliton trains. Correspondingly, the trap potential is omitted in

Eq. (52). This means that we shall consider analytically relatively small segments

of the modulated wave much greater than the wavelength L and much smaller than

the size l of the whole condensate in the trap.
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To solve the problem of the condensate evolution, we note that the substitution

u(ζ, τ) =
v(ζ, τ)
√

g(τ)
(54)

transforms Eq. (52) in

ivτ + vζζ + 2|v|2v = iεv (55)

to

ε(τ) =
1

2g(τ)

dg(τ)

dτ
. (56)

Thus, for slowly varying g(τ) the right hand side of Eq. (55) can be considered as a

small perturbation: |ε(τ)| � 1. As follows from Eq. (54), for the initial distribution

one has v(ζ, 0) = u(ζ, 0). For our purposes it is enough to consider typical partic-

ular solutions of the unperturbed NLS equation which are parameterized by two

parameters λ1,2. Under the influence of the perturbation, these parameters in the

adiabatic approximation become slow functions of time τ . Equations which govern

their evolution can be derived by the following simple and direct method.

First, the initial values of λi, i = 1, 2, as well as the coefficients in Eq. (55) are

supposed to be independent of ζ, hence the wavelength L of the nonlinear wave

evolving according to Eq. (55) is constant,

d

dτ
L(λ1(τ), λ2(τ)) = 0 . (57)

Second, we can easily find that the variable

Ñ(λ1(τ), λ2(τ)) =

∫ L

0

|v|2dζ (58)

changes with time according to

d

dτ
Ñ(λ1(τ), λ2(τ)) = 2εÑ(λ1(τ), λ2(τ)) . (59)

Then, if the expressions for L and Ñ in terms of λ1 and λ2 are known, Eqs. (57) and

(59) reduce to two equations linear with respect to derivatives dλ1/dτ and dλ2/dτ ,

which yield the desired system of differential equations for λ1 and λ2. The form

of this system depends, of course, on the choice of the parameters λ1 and λ2. The

most convenient choice is provided by the so-called “finite-gap integration method”

of obtaining periodic solutions. Therefore we shall use the parametrization of the

periodic solutions of the NLS equation obtained by this method (see e.g. Ref. 26),

and consider two most typical cases.
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Case 1: cn-wave in a BEC with a negative scattering length

In the case of a BEC with negative scattering length there are two simple two-

parametric periodic solutions of unperturbed Eq. (55). One of them has the form

v(ζ, τ) = 2λ1e
−4i(λ2

1
−λ2

2
)τ cn

[

2
√

λ2
1 + λ2

2ζ,m

]

, (60)

where the parameter of elliptic function is given by

m =
λ2

1

λ2
1 + λ2

2

. (61)

Then straightforward calculations give

L =
2K(m)√
λ1 + λ2

, Ñ = 8
√

λ1 + λ2 E(m) − 4λ2
2L (62)

where K(m) and E(m) are complete elliptic integrals of the first and the second

kind, respectively. Substitution of these expressions into Eqs. (57) and (59) yields

the system

dλ1

dZ
=

((λ2
1 + λ2

2)E(m) − λ2
2K(m))E(m)λ1

λ2
1E

2(m) + λ2
2(K(m) − E(m))2

,

dλ2

dZ
=

(λ2
2K(m) − (λ2

1 + λ2
2)E(m))(K(m) − E(m))λ2

λ2
1E

2(m) + λ2
2(K(m) − E(m))2

(63)

where

Z = Z(τ) = 2

∫ t

0

ε(τ ′)dτ ′ = ln g(τ) , Z(0) = 0 . (64)

If dependence of λ1 and λ2 on Z is found from (63), then Eq. (54) gives evolution

of the periodic wave u(ζ, τ) with a slow change of the parameter Z connected with

time τ by Eq. (64). In particular, the density of particles in the condensate is

given by

|u|2 = 4e−Zλ2
1(Z) cn2

[

2
√

λ2
1(Z) + λ2

2(Z)ζ, m

]

, (65)

where transformation to the time variable should be performed with the use of

Eq. (64).

In Fig. 5(a) we present an example of the evolution of the respective density

distribution. The figure shows that in the case of negative scattering length given by

Eq. (9) an increase in the magnetic field B(τ) within the region B(0) < B(τ) < B0

results in the compression of the atomic density and the formation of a lattice of

matter solitons.
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Case 2: dn-wave in a BEC with a negative scattering length

Another simple solution of the NLS equation (55) is given by

v(ζ, τ) = (λ1 + λ2)e
−2i(λ2

1
+λ2

2
)τ dn[(λ1 + λ2)ζ,m] , (66)

where

m =
4λ1λ2

(λ1 + λ2)2
. (67)

By analogy with (63) we derive the following equations for λ1 and λ2:

dλ1

dZ
=

λ1(λ1 + λ2)E(m)

(λ1 − λ2)K(m) + (λ1 + λ2)E(m)
,

dλ2

dZ
= − λ2(λ1 + λ2)E(m)

(λ1 − λ2)K(m) − (λ1 + λ2)E(m)
,

(68)

where it is supposed that λ1 > λ2 and Z is defined by Eq. (64). Now the density

of particles is given by

|u|2 = e−Z [λ1(z) + λ2(Z)]2 dn2[(λ1(Z) + λ2(z))ζ,m] . (69)
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Fig. 5. (a) Evolution of the density distributions: case 1 (cn-wave); (b) case 2 (sn-wave).
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An example of the respective evolution is given in Fig. 5(b). Like in the previous

case, one observes the formation of a lattice of matter solitons starting with a weakly

modulated periodic wave.

Stability of the above solutions has been studied numerically in Ref. 38, where

it has been found that soliton trains are stable in the case of positive scattering

length and are also stable in the case of negative scattering length for special choice

of the parameters. In this context, the adiabatic variation of the scattering length,

which results in the change of the wave parameters, can be used for stabilizing (or

destabilizing) the respective periodic solution.

5. Propagation and Interactions of Solitons in the Axial Trap

The formation of soliton and the soliton train is followed by its propagation along

the axial trap. The investigation of related phenomena required the solution of

the GP equation with the different type of traps. While the one-dimensional GP

without trap potential and the Schrödinger equation with harmonic potential are

integrable models, the joint action of mean field nonlinearity and the trap potential

leads in general to a nonintegrable system. Analysis of the soliton dynamics in

traps in the form of the double-well or periodic potential shows the appearance of

new effects. Indeed, the interaction of solitons interaction in double-well potential

induce a chaotic exchange of energy between solitons.39 The periodic trap — so-

called optical lattice — supports gap solitons40 and discrete breathers.41,42 Some

new phenomena are observed in the interactions of solitons in the harmonic trap.

The velocity of propagation and the number of solitons depend on the position

of the initial condensate in the harmonic trap (see Sec. 2). After releasing, the

solitons are observed to propagate in line as they repel each other. It is well known

that bright solitons in the NLS equation show attraction (repulsion) when the

relative phase between them is zero (π).43,44 According to Al Khawaja et al.45 the

apparent repulsion of solitons could be explained by “phase imprinting” during

formation, where the alternate phase structure of zero and π is provided. The

joint action of the harmonic trap and the solitons interaction potential produce the

stable configurations in two solitons and N-solitons systems.46 The control of bright

soliton can be performed by the introducing artificial inhomogeneities of linear and

nonlinear types, by varying the trap potential in a space and time. The control also

can be achieved by the spatial and time variations of the mean field nonlinearity of

the GP equation.

It should be noted that at higher densities, the dynamics of nonlinear matter

waves start to deviate from one predicted by the one-dimensional NLS equation

model. Numerical simulations performed by Salasnich et al.47 showed that due to

the presence of the axial trap, the dynamics of solitons is much more complex. In

some region of parameters results can be described by 1D GPE with nonpolynomial

approximation48 and more generally by the system of 1D nonlinear equations.23 We

will discuss this case detaily in Sec. 6.
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5.1. Dynamics of bright matter wave solitons with inhomogeneous

scattering length

In order to control the dynamics of bright matter-wave solitons, it was suggested

that artificially induced inhomogeneities be used, by considering a variation in the

space distribution of the atomic two-body scattering length.49 The condensate with

nonlinear impurity is described by the equation

iuτ = −uζζ + αζ2u− (1 + εf(ζ))|u|2u , (70)

where τ ≡ ω⊥t/2 and ζ = z/l⊥. So, ε > 0 (ε < 0) refers to the negative (positive)

variation of the scattering length. Equation (70), for α = 0 (ωz → 0) and ε = 0,

has the soliton solution

u(s) =
√

2A sech[A(z − vτ)]ei[ vz
2

+A2τ− v2τ
4

] , (71)

where A is a constant and v is the soliton velocity.

Considering that in the transversal direction we have a much stronger trapping

potential (ω⊥ � ωz), validating an approximation where we average over the x

and y directions, we should observe that any different modeling of the impurity in

such transversal directions can only bring a multiplicative constant factor in the

resulting nonlinear 1D equation. This will result in changing the absolute value

of the scattering length or its local space variation (the constant ε). We should

also add that the changes in the scattering length will not induce changes in the

transverse mode structure; so the averaging procedure over transverse modes is

still valid, and the level of applicability is the same as in the case with ε = 0. If we

consider modulations of the nonlinear coefficient via, for example, local variation of

transverse distribution of trap potential, then the transverse modal structure will

change and the 1D approximation can fail.

The 1D Hamiltonian energy corresponding to Eq. (70) is given by

〈H〉 =
1

n0

∫ ∞

−∞

dζ

[

|uζ |2 + αζ2|u|2 − (1 + εf(ζ))

2
|u|4
]

, (72)

where n0 is the normalization of u, related to the number of particles N and the

scattering length as0:

n0 =
4N |as0|
l⊥

. (73)

To study the dynamics of the perturbed soliton we use the trial function50

u = A sech

(

ζ − η

a

)

ei[φ+w(ζ−η)+b(ζ−η)2] (74)

where A, a, η, φ, w, and b are time-dependent variational parameters. In this case

u is normalized to n0 = 2aA2. To derive the equations for the time-dependent

parameters of the soliton, we first obtain the averaged Lagrangian

L̄(τ) =

∫

L(ζ, τ)dζ , (75)
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with

L(ζ, τ) =
i

2
(uτu

∗ − u∗τu) − |uζ |2 − αζ2|u|2 +
1

2
[1 + εf(ζ)]|u|4, (76)

so that L̄ is given by

L̄ = −n0

[

φτ − wητ +
π2

12
a2bτ

]

− n0

3a2
− n0w

2 − π2n0a
2b2

3

+
n2

0

6a
+ ε

n2
0

8a2
F (a, η) − αn0

(

η2 +
π2

12
a2

)

, (77)

where

F (a, η) ≡
∫ ∞

−∞

dζ
f(ζ)

cosh4( ζ−ηa )
. (78)

and the corresponding Euler-Lagrange equations for the parameters a and η read

aττ =
16

π2a3
− 4n0

π2a2
− ε

3n0

π2a2

[

2
F

a
− ∂F

∂a

]

− 4αa ,

ηττ = −4αη + ε
n0

4a2

∂F

∂η
.

(79)

When a is constant we have the well-known description of motion of the soliton

center as the unit mass particle in an anharmonic potential which in the present

case is given by U(η) = −ε(n0/(4a
2))F (a, η). For ε < 0, to overcome such effective

potential barrier, the velocity at η = 0 should be larger than vc, where v2
c =

|ε|n0/(2a
2)F (a, η = 0). In order to have a more general formulation of the model,

we consider a non-zero external potential parameterized by α in the present section.

One can also explore the behavior of the soliton by considering a more general time-

dependent form of the external potential as studied in Ref. 51. However, here the

main motivation is the propagation of matter wave bright solitons in a 1D cigar-like

trap,15,16 so that we assume α = 0 in the next sections. The applicability of the

approach was tested by a comparison between PDE and ODE results. In our case

of bright solitons we do not have a problem encountered by the authors of Ref. 52

in the application of the ODE description. In their approach to description of dark

solitons they also needed to treat evolution of the background. We note that in

Ref. 53 the background influence for the dark soliton in quasi-1D BEC with local

linear inhomogeneity is considered.

5.2. Point-like nonlinear impurity

Let us analyze the system of Eqs. (79), with α = 0, by first considering a delta-type

inhomogeneity (f(ζ) = δ(ζ)), and look for the fixed points of such a system. In this

case, the approximation for the inhomogeneity can be used when the characteristic

scale of the inhomogeneity lε is much less than the soliton scale ls; i.e., when

ls ≡
√

l2⊥l‖
N |as0|

=
1

√

|as0|ρc
� lε , (80)
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where ρc ≡ N/(l‖l
2
⊥) is the condensate density. From Eq. (78), with f(ζ) = δ(ζ),

we obtain F and its derivatives:







































F (a, η) = sech4

(

η

a

)

,

∂F

∂a
=

4η

a2
tanh

(

η

a

)

sech4

(

η

a

)

,

∂F

∂η
= −4

a
tanh

(

η

a

)

sech4

(

η

a

)

.

(81)

The fixed point for the soliton center is given by η = 0. This corresponds to the

case of an atomic matter soliton trapped by the local variation of the two-body

scattering length. In case the local variation corresponds to a positive scattering

length (ε < 0), we should observe the soliton being reflected by the inhomogeneity.

Then, the stationary width ac can be defined by

ac =
8 − 3εn0

2n0
. (82)

Expanding the solution near ac we obtain the frequencies of small oscillations

for the width a and for the center-of-mass η of the soliton, localized by the impurity.

The square of such frequencies are, respectively, given by

ω2
a =

4n0

π2

(

2n0

8 − 3n0ε

)3

ω2
η = εn0

(

2n0

8 − 3n0ε

)4

.

(83)

In the variational approach, when the soliton collides with the impurity, we have

the interaction of the oscillating internal degree of freedom (the width) with the

soliton center. As can be seen from Eqs. (83), the frequencies of the oscillations can

match, for a certain value of ε, with the energy transfer between the two modes.

So, as a result of the reflection from attractive inhomogeneity in BEC, a depinning

of the soliton can occur.

5.2.1. Interface between two BEC media

Now, we consider another interesting case of an interface between two media such

that at ζ = 0 we have a sudden change in the two-body scattering length. The size

of the inhomogeneity is given by ε in Eq. (70), where f(ζ) = θ(ζ). In this case, we
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have
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)
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(84)

And, from Eqs. (79) with α = 0, we obtain the coupled equations:

aττ =
16

π2a3
− (ε+ 2)

2n0

π2a2
− ε

3n0

π2a2

[

tanh

(

η

a

)

− 1

3
tanh3

(

η

a

)

+

(

η

a

)

sech4

(

η

a

)]

, (85)

ηττ = ε
n0

4a2
sech4

(

η

a

)

.

There is no fixed point. At the interface, the value of the width is reduced,

aint =
8

n0(ε+ 2)
, (86)

and the frequency of oscillation of the pulse width is

ωa =
n2

0(ε+ 2)2

16π
, (87)

or a constant value of a, from the system (85), we obtain

η2
τ = 2ε

n0

4a2
F (a, η) ≤ ε

2n0

3a
. (88)

When a = 4/n0 the system (85) reduces to the single equation for η describing

the motion of the effective particle, for an optical beam crossing the interface of

two nonlinear Kerr media considered in Refs. 54 and 55. If the velocity exceeds

the critical value, the soliton pass through the inhomogeneity. An interesting effect,

predicted in Ref. 55, can occur when the soliton cross the interface, namely, the

possibility of soliton splitting. The soliton is the solution in the first medium. In

the second medium it can be considered as the initial wave packet deviating from

the solitonic solution for this media. Applying the approach developed in Ref. 28,

such an initial condition will decay on few solitons plus radiation.55 The number of

generated solitons is equal to

nsol = I
[

1√
2π

∫ ∞

−∞

|u0|dζ +
1

2

]

, (89)

where u0 is the initial solution for the second medium, and I[· · ·] stands for integer

part of [· · ·]. Thus, if we have a jump in the scattering length given by ∆as =

as2 − as1, then the number of generated solitons in the second part of the BEC
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is equal to nsol = I[
√

as2/as1 + 1/2], where (1 + ε) = as2/as1 is the ratio of the

atomic scattering lengths. For example, for the ratio 9/4 < as2/as1 < 25/4 (or

1.25 < ε < 5.25) we obtain two solitons in the right-hand-side medium. To obtain

nsol, we need ε such that nsol(nsol − 1) < (ε+ 3/4) < nsol(nsol + 1).

5.2.2. Slowly varying inhomogeneity

In this subsection, we consider the system of Eqs. (79) for a slowly varying (on the

soliton scale) inhomogeneity, given by f(ζ) = exp(−ζ2/l2ε), with lε � a. In this case,

we obtain the following approximate expressions for F (a, η) and its derivatives:






































F (a, η) ≈ 4a

3
exp

(

−η
2

l2ε

)

,

∂F

∂a
≈ 4

3
exp

(

−η
2

l2ε

)

,

∂F

∂η
≈ −

(

8aη

3l2ε

)

exp

(

−η
2

l2ε

)

.

(90)

There is a fixed point at η = 0, given by

ac =
4

n0(1 + ε)
. (91)

The soliton is trapped by the inhomogeneity for positive ε. In the trapped regime,

due to the nonzero chirp, oscillations of the width and oscillations of the center of

mass occur. The corresponding frequencies are, respectively, given by:

ωa =
n2

0(1 + ε)2

4π
, (92)

and

ωη =

√

ε(1 + ε)

6

n0

lε

lε�a−→ 0 . (93)

Considering an experiment, as in Refs. 15 and 16, with the scattering length of the

order of −3a0, and with a variation of about one a0, we obtain ε ∼ 1/3. Taking

the critical number k⊥ = n0/4 = 0.676, we obtain ωa ≈ 1, which implies that the

characteristic frequency of oscillations of the soliton width is close to ω⊥ (as the

frequencies are given in this unit). And the frequency of oscillation of the center of

mass goes to zero with lε � a, as ωη ∼ (0.6/lε). We note that, the length unit l⊥,

for 7Li with ω⊥ = 2π × 640 Hz, is about 1.5 µm. These values for the oscillation

frequencies can be experimentally verified.

5.2.3. Numerical 1D results and variational approach

Our approach for pulses deviating from the exact soliton solution is interesting

from the experimental point of view, considering the difficulty in producing exact
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Fig. 6. On the left we show three frames; respectively, from top to bottom, the width a, the
frequency of the width oscillations ωa, and the frequency of the soliton center oscillations ωη .
They are shown as functions of the strength of the nonlinear delta-like impurity ε. Solid line with
bullets corresponds to full numerical solution, and dashed line to the corresponding variational
approach. On the right, we can see the density profile evolution for a fixed value of the amplitude
of the delta-like impurity ε, with arbitrary n0, in a projected 3D plot. τ and ζ are dimensionless
quantities, as given in the text. At ζ = 0, we observe the oscillation of the amplitude, starting
from the normal one and going to the nonlinear localized one. Each line represents a fixed τ . For
larger ε one can also observe the emission of radiation. All the quantities, in all the frames, are
dimensionless and given with appropriate scaling in terms of the normalization n0. Obtained from
Ref. 49.

solitonic solutions. Of particular interest is the non-trivial case of nonlinear Dirac-

delta impurity (f(ζ) = δ(ζ)), where we made detailed comparison between the

variational and full numerical solution of the GP equation. In Fig. 6, in the left, the

variation results are compared with the numerical ones, for fixed point of the width,

given by a (top frame); for the frequency of oscillations of the width, ωa (middle

frame); and for the frequency of oscillations of the center-of-mass, ωη, trapped by

the inhomogeneity (bottom frame). In this figure, at the right, it is shown numerical

simulations of the wave profile.

By using the variational approach, it was observed that the width goes to zero

and the frequencies are singular when

ε = εc =
8

3n0
. (94)

Here, it is interesting to observe that we have two critical numbers that are related:

one of the critical number k⊥ = n0,max/4 ≈ 0.676 comes from the quasi-1D limit of

a 3D calculation;56 another is the maximum amplitude of the delta-like impurity

that we have just introduced, given by Eq. (94). Considering both restrictions, the

smaller value of εc is about one. The plots in the three frames shown in Fig. 6,

the left, are obtained for arbitrary values of n0 (where the maximum is about 8/3,

according to Ref. 56), after considering a rescaling in the equations for the width

(82) and frequencies (83); and also for ε, such that in the x-axis we consider (n0/4)ε.

From Eq. (94), one obtains εc(n0/4) = 2/3. As shown in this figure, the variational
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results are supported by the full numerical calculation. The singularity occurs when

the contributions coming from the inhomogeneity and nonlinearity are equal to the

contribution from the quantum pressure, as seen from Eq. (79). When ε ≥ εc, the

collapse of solitary wave occurs. So, we can observe the collapse of a 1D soliton

on the attractive nonlinear impurity. This possibility can be obtained following a

dimensional analysis in the 1D Hamiltonian given in Eq. (72). The behavior of the

field at small widths is u ∼ 1/L1/2. Taking into account that δ(ζ) ∼ 1/L ∼ |u|2, we

can conclude that the contribution of the potential energy due to the impurity is

∼ |u|6. For positive ε this term on the impurity exceeds the quantum pressure and

leads to the collapse of the soliton. In real situations, the collapse will be arrested

on the final stage of the evolution, when the width of the soliton is of the order of

the inhomogeneity scale. Then, the delta-function approximation for the impurity

will break up.

Observing the numerical simulations of the wave profile, shown in Fig. 6 on the

right, we note that, after strong emission of radiation, it evolves into the so-called

nonlinear localized mode. The nonlinear localized mode represents an exact solution

of GP equation with nonlinear impurity (70) and it is the nonlinear standing atomic

matter wave. The solution,

u(ni) =
√

2a sech[a|ζ| + β]eia
2τ , (95)

where

β ≡ β(ε, a) ≡ sign(ε) ln(2|ε|a+
√

1 + 4ε2a2)1/2 , (96)

can be obtained by using the solution of the homogeneous equation with the re-

quirement of the field continuity at the inhomogeneity and satisfying the jump

condition in the first derivative.57 The normalization N (ni), is

N (ni) = 4a[1 − εγ] , γ ≡ γ(ε, a)

γ =

√
1 + 4ε2a2 − 1

2ε2a
=

2a√
1 + 4ε2a2 + 1

.
(97)

For small amplitude (or small impurity strength |ε|)

N (ni) ≈ 4a(1 − εa) . (98)

At large amplitudes, we have N (ni) → 2/ε for ε > 0; and N (ni) → 8a for ε < 0.

Note that for ε < 0 we have a solution with two-bump structure for the nonlinear

localized mode. As shown in Ref. 57, this mode is unstable. Here, we have considered

only the case ε > 0. In order to verify the stability of the solutions, one can study the

behavior of the second time derivative of the mean-square radius, as in Refs. 57–59.

To obtain the second time derivative of the mean-square radius, we use the Virial
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approach, with H = −∂ζζ + V and V ≡ −(1 + εδ(ζ))|u|2:

〈ζ2〉ττ = 4〈[H, ζ∂ζ ]〉 = 8〈(−∂ζζ)〉 − 4〈ζVζ〉 ,

〈ζVζ 〉 = = −1

2
〈V 〉 +

ε

2n0
|u0|4 ,

〈ζ2〉ττ =
1

n0

∫

dζ(8|uζ |2 − 2|u|4) − 4ε

n0
|u0|4 .

(99)

For the system to collapse we need 〈ζ2〉ττ < 0; implying that

ε >
1

2|u(0)|4
∫

(4|uζ |2 − |u|4)dζ . (100)

Using our solitonic ansatz, when a → 0, we reach the critical limit, εc = 8/(3n0)

that was obtained before.

We have also investigated the dynamics of the matter soliton interacting with

inhomogeneity, studying different regimes of propagation for several values of ε. In

Fig. 7, we present the results of numerical simulations for the final velocity (vf )

versus the initial velocity (vi) of the soliton, considering different strengths ε for the

delta-like inhomogeneity. In this figure and in the next numerical results, considering

the general application of the 1D NLS equation with nonlinear impurity, we took

N |as0|/l⊥ = n0/4 = 1, that can easily be rescaled to a value smaller than 0.676,

consistent with the BEC quasi-1D results. Considering a factor ξ for the rescaling,

as a general rule, we have the following transformations:

ε → εξ ,

{length} → {length}ξ , (101)

{time} → {time}ξ2 .

We should note that, the rescaling applied in Fig. 6 was such that ξ = n0/4. In

this case, for the velocities, one should make the replacement v → v(4/n0) in the

plots. As observed in Fig. 7, a region for the velocities where the attractive nonlin-

ear impurity reflects the soliton exists. In the model involving the constant width

approximation, this region corresponds to the trapped soliton exists. The numerical

results show that one window corresponding to the reflection of the soliton always

exists. By increasing ε, this window is shifted to larger initial velocities. From the

variation of the number N , with respect to the initial velocity vi (see Fig. 7), one

can also observe strong wave emissions by soliton, when ε increases and tends to

the critical value (see also Ref. 57). This picture reminds us of the picture of the

collapse in 2D BEC with attractive interactions. We note that, by considering the

interaction of sine-Gordon kink with attractive defects, many windows were found,

corresponding to a resonance with local mode (see Ref. 60). To compare with the

results given in the lower frame and left of Fig. 7, we present in Fig. 8, for a fixed

value of ε = 0.4, full numerical calculation of the time evolution of the center-of-

mass position, considering different values of the initial velocity.
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Fig. 7. On the left, we show numerical simulations of the full GP equation, showing the depen-
dence of n0, related to the number of atoms N (top frame), and final velocity vf (bottom frame),
with respect to the initial velocity vi. The results of both frames are shown for different values of
ε, as indicated inside the top frame. On the right, we show a comparison between variational and
full numerical results for different values of ε. The initial value (for vi = 0) n0 = 4 can be rescaled
as explained in the text. All the quantities are dimensionless. Obtained from Ref. 49.
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Fig. 8. For a fixed value of ε = 0.4, we present full numerical solution of the GP equation, with
the time evolution of the center-of-mass position, considering different values of the initial velocity,
as given inside the frame. The results, given for n0 = 4, can be rescaled as explained in the text.
All the quantities are dimensionless. Obtained from Ref. 49.

One can also observe, through the results given in the right frame of Fig. 7, that

numerical simulations of the variational Eqs. (79)–(81) reproduce only qualitatively

the behavior observed in the full numerical solution of the GP equation. In this

figures, we observe the behavior of the final velocity as a function of the initial

velocity, for ε = 0.4 and n0 = 4. With a solid line we represent the variational

results obtained from Eq. (79) and, with a dashed line, the full numerical solution.

We note that the full numerical solution shows a window, between two trapped

regions, where the soliton is reflected by the impurity. The variational result shows

the window of reflection starting for smaller initial velocities and, instead of a
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trapped region, a more complicated dynamics near the points where the regime

of reflection starts or finishes. One can improve the variational approach by taking

into account the influence of radiative friction on the soliton motion on the impurity

as given in Ref. 61. The addition of a term cζ2ζτ , where c is a phenomenological

constant, in the second of Eqs. (79), has the effect of damping the oscillations

(∼ 1/
√
τ ), improving the results as compared with full numerical solutions. By

using c = 0.01, we can also observe the second trapped region close to the exact

results (see the curve with solid circles in the right frame of Fig. 7).

The variational equation results, without the damping term, show a more com-

plicated (probably chaotic) dynamics in the region where the reflection occurs. In

this region, we also can see the more rare events with the transmission of soliton

through the impurity. This observation resembles the phenomena observed at the

interaction of the sine-Gordon equation kink with a local defect.62 The system of

ODEs (two-mode model) has a similar structure as Eqs. (79), showing chaotic be-

haviors, leading always to a finite time for the period of the soliton trapping. This

phenomenon is due to stochastic instabilities inherent to this dynamical system.

The reason for this phenomenon is that the finite dimensional system, like the one

given by Eqs. (79), cannot take into account the soliton radiation that interacts

with the defect. The effect of the radiation leads to the appearance of the damping

in Eqs. (79) that changes the long-time behavior of the system. In particular, the

radiative damping can lead to the long-time regular dynamics.62 We should note

that, in the present case of bright soliton propagation through a delta-like impurity,

we have not faced the same kind of problem of applicability of the approach as the

one observed in Ref. 52. As discussed before, the result was expected considering

that in Ref. 52 the collective variables have to be modified due to the background

evolution. We should add that we have used a modified variational approach in-

cluding chirp, presenting additional degree of freedom. The impurity couples the

internal degrees of freedom with the translational; so it occurs energy exchange

between modes, such that we have reflection or transmission for the parameters

where the effective particle method predict trapped regime.55

5.3. Full numerical three-dimensional results

In order to check the validity of the 1D reduction, in case of point-like nonlinear

impurity, we have also performed full 3D numerical calculations. We have obtained

numerically the ground-state solutions by solving the original 3D equation, Eq. (1),

with the nonlinear cubic term multiplied by 1 + εδ(ζ), and considering the trap

only in the transversal directions.

The results are given in Fig. 9, for 2πn0 = 5 and 10, showing the ground-

state behavior as a function of ζ, at the origin in the transversal directions. We

observe that there is a critical value for the parameter ε of the nonlinearity such

that for larger ε the system collapses. For example, in the case of 2πn0 = 10,

the system collapses if we consider ε ≥ 0.45. And, in the case of 2πn0 = 5, the
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Fig. 9. In the above Figs. (a) and (b) we show results for the ground-state solutions obtained
by solving the original 3D equation given in Eq. (1)(solid line) including impurity, in comparison
with the corresponding 1D solutions (dashed-lines with dots), Eq. (95). All the quantities are in
dimensionless units: ζ = z/l⊥, with l⊥ ≡

√

~/(mω⊥); and the wave-function is normalized to
one, such that |ψ(0, ζ)|2 ≡ |Ψ(r, t)||2|r|=z

(l3⊥/N). The parameter we have considered, n0 and ε, are

given inside the figures. Obtained from Ref. 49.

system collapses for ε ≥ 1.65. The deviation from the analytical prediction, that

one can observe particularly in the case of 2πn0 = 10, is connected with the fact

that the contribution of the nonlinear term in the transverse direction becomes

comparable with the transverse harmonic potential. So, as explained before, the 1D

approximation is expected to be violated.

We found it illustrative to present in Fig. 10 the relation between the two critical

limits: k⊥(ε) ≡ n0,max/4 and the inhomogeneity parameter εc. When ε = 0 we

have the well-known k⊥ = Nc|as0|/l⊥ ≈ 0.676. As the parameter ε of a delta-like

impurity increases, the corresponding negative value of the nonlinear term of Eq. (1)

also increases, and the maximum number of atoms Nc will decrease (considering

fixed as0 and l⊥). The agreement of 1D with 3D model was also verified in a

dynamical calculation, using a specific example where the soliton is reflecting at

the impurity. The results of the 3D dynamical calculation are shown in Fig. 10,

considering the distance of the impurity from the origin to be ∆ζ = 25. In this

case, we have considered parameters that correspond to the 1D parameters of Figs. 7

(n0 = 4, ε = 0.4, vi = 0.8). After proper rescaling [see Eq. (101)], with n0 = 5/(2π),

we obtain ε = 2 and vi = 0.16. We have presented several plots of the soliton

profile using time steps such that ∆τ = 50. We observe the soliton reflecting at

the impurity, following the same behavior as observed in the 1D numerical results.

From an analysis of the critical limits given on the left side of Fig. 10, one should
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Fig. 10. On the left, we show a plot with the relation between the critical numbers k⊥ and εc.
The maximum number of atoms Nc is given by k⊥ = Nc|as0|/l⊥, and ε is the impurity parameter
for delta-like inhomogeneity. The curve shows the limit between two regions for the condensate:
the lower part is the allowed region and the upper part is the collapsing region. Obtained from
Ref. 49. On the right, we show the 3D numerical evolution of a soliton reflecting at an impurity
placed at the position ζ = 25, considering 2πn0 = 5, vi = 0.16 and ε = 2, for the case of delta-like
impurity. The magnitude of the wave function ψ(0, ζ) is in arbitrary scale, and all the quantities
are in dimensionless units.

expect that for ε > 1.6 the system will collapse. However, the results on the left

side of Fig. 10 are obtained for the ground-state in static calculations; the results

on the right side of Fig. 10 shows that such critical limits can be increased in some

extend when one considers a dynamical calculation with some initial velocity.

The present investigation of the local variation in space of the atomic scatter-

ing length shows that different regimes of the soliton interaction with the nonlin-

ear impurity are possible. They are observed trapping, reflection and transmission

regimes. The most interesting effect is the reflection of the atomic soliton by the

attractive nonlinear impurity. We have also verified the occurrence of collapse of the

soliton on the attractive impurity, when the strength of the impurity (or the initial

number of atoms) exceeds a certain critical value, even in true 1D. This effect in

1D BEC resembles the collapsing phenomena that occur in 2D BEC. By using the

time-dependent variational approach we obtain a good description of the collapsing

phenomena and, qualitatively, the reflection and trapping dynamics. The usual 3D

collapse of the ground state have a critical number of atoms reduced by increasing

the strength of the impurity.

The present approach can be more easily implemented in optical induced Fesh-

bach experiments, as discussed in Ref. 63, with optimistic perspectives of applica-

tions in current experiments with ultracold atoms. The physical parameters can be

estimated by using the optical method for the variation of the scattering length.63

By focusing a laser beam or using mask, we can define a region lε where the scat-

tering length as is varying, as discussed in Sec. 3.2 for the case of a smooth varying

inhomogeneity. In the experiments reported in Refs. 15 and 16 the characteristic
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length is about 1.5µm, implying that lε ≥ 5µm. For the case of a sudden variation

of the two-body scattering length, represented by a nonlinear jump inhomogeneity,

using analogy with a nonlinear optical problem,55 we presented the condition for

the multiple bright matter soliton generation.

5.4. Bright solitons under time-dependent trap

Let us consider the case when the longitudinal trap is time dependent, with V =

(1/2)ω2
0f(τ)ζ2, and f(τ) = 1 + ε cos(Ωτ). We can look for the solution in the form

of chirped soliton, as given by Eq. (74). Applying the variational approach, we

obtain the equation for the soliton width and coordinate

aττ =
16

πa3
− 4n0

π2a2
− 2f(τ)ω2

0a , (102)

ηττ = −2f(τ)η , (103)

where n0 = 2A2a. For the harmonic modulation of f(τ) the equation of motion for

the center of soliton is the Mathieu equation. Thus, the parametric resonances in

the soliton oscillations occur when

Ω =
2
√

2

n
(n = 1, 2, 3, . . .) . (104)

It is possible for some set of parameters to have the same resonance in the oscil-

lations of the width. Then a double parametric resonance in the oscillations of the

center and the width of soliton appears.64

When the frequency of the trap is high V ∼ (1/ε)α(τ/ε)f(ζ), ε ∼ 1/Ω, Ω � 1,

the resulting dynamics can be investigated using the averaging of the GP equation

over rapid modulations.65 According to averaging method, the field is represented

as

u(ζ, τ) = U + εu1 + ε2u2 + · · · (105)

For the slowly varying field V =
√

1 + ε2f2(ζ)/2 U we obtain the averaged GP

equation

iVτ + Vζζ + 2|V |2V =

[

α0f(ζ) +
ε2

2
(fζ(ζ))

2

]

V +O(ε4) . (106)

Thus the averaged dynamics is described as under the effective potential

W = α0f(ζ) +
ε2

2
(fζ(ζ))

2 . (107)

This result shows, that we can manage the form of the trap potential via the rapid

modulation in time of parameters.

For example when the time-dependent potential is

V (ζ) = (−α0 + α1 sin(Ωt))f(ζ), f(ζ) = ζ2 , (108)
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the averaged potential is

W =

(

−α0 + 2
α2

1

Ω2

)

ζ2 . (109)

Thus when α1 >
√

|α|/2Ω, the sign of the effective potential is reversed and the

solitary wave becomes stable. The analysis of the more complicated potentials can

be found in Ref. 65.

5.5. Adiabatic compression of soliton matter waves

The adiabatic variations of the atomic scattering length in space can be used as

an effective way for controlling soliton’s parameters and to induce changes in their

shape which could be useful for applications.66 In contrast to abrupt variations,

considered in the previous subsection, adiabatic changes make it possible to preserve

the integrity of the soliton (no splitting occurs), this leading bright solitons to the

compression of the pulse with the increase of the matter density. These phenomena

are shown to exist both in the presence and in the absence of a parabolic confining

potential. We find that, for bright solitons, except for the oscillatory motion around

the bottom of the trap, the phenomena of pulse compression is practically the same

as in the absence of the trap (this is particularly true for solitons initially at rest

in the bottom of the trap). The possibility to compress BEC solitons could be an

experimental tool to investigate the range of validity of the 1D GPE. Since the quasi

one-dimensional regime is valid for low densities, it would be indeed interesting to

see how far one can compress a soliton in a real experiment by means of adiabatic

changes of the scattering length. In contrast with Josephson junctions and optical

fibers, which require structural changes or preparation of new samples, the study

of adiabatic nonlinear perturbations on BEC solitons appears more natural and

easy to perform, since the strength of the nonlinear interaction can be changed by

using only external fields. We also remark that soliton dynamics in a quasi one-

dimensional BEC under time-dependent linear potential was recently studied in

Ref. 67.

In order to model an adiabatic variation of the atomic scattering in 1D (cigar-

shaped) BEC, we consider the following normalized Gross–Pitaevskii equation20,68

iuτ + uζζ + σγ(ζ, τ)|u|2u− ω2ζ2u = 0 , (110)

where u is the ground state wave function of the condensate, γ(ζ, τ) is a slowly

varying function of space and time, σ ± 1 corresponds to the case of negative and

positive scattering length as (ω denotes the longitudinal frequency of the trap).

Although the analysis can be performed for generic smooth functions γ(ζ, τ),

we shall restrict to the limiting case variation in the space: γ ≡ γ(ζ), being ex-

perimentally easier to realize. We will use the perturbative approach. Using the

transformation v =
√

γ(ζ)u in Eq. (110), we have

ivτ + vζζ + σ|v|2v = R(v) . (111)
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R(v) is a small perturbation, since L/Lγ � 1, where L is the characteristic solitonic

scale and Lγ is the scale of the scattering length modulation. We are also neglecting

the terms γζζ/(2γ)v−(3/4)(γζ)
2v/γ2 which are of the order L2/L2

γ . So, if we ignore

the trap and the terms that are much smaller than the corresponding temporal and

spatial characteristic scales, then

R(v) ' F (ζ)vζ , with F (ζ) ≡ (ln γ(ζ))ζ . (112)

With the initial condition as a single soliton,

v(ζ, τ) =
√

2A(τ) sech[A(τ)(ζ − η(τ))] exp[i(k(τ) + C(τ)((ζ − η(τ)))] , (113)

then, with the norm equation N =
∫

|v|2dζ, we find A = A0γ(τ). So, for the ampli-

tude and the width of the soliton, we have Aψ = A0
√
γ, a = 1/(A0γ), in agreement

with the variational approach. From this, we conclude that an adiabatic increase

of the scattering length can be used to narrow the width of a bright soliton matter

wave. Soliton compression phenomena induced by linear damping amplification are

also known from nonlinear optics.69

Following soliton theory of Refs. 70 and 71,

Aτ =

∫ ∞

−∞

sech(y) Im(R)dy ,

Cτ =

∫ ∞

−∞

tanh(y) sech(y) Re(R)dy ,

ητ = 2σC +
1

A2

∫ ∞

−∞

y sech(y) Im(R)dy ,

(114)

we find that the equations for the soliton’s parameters (113) are:

Aτ = AC

∫ ∞

−∞

F
( y

A
+ ζ
)

sech2(y)dy ≈ 2ACF (ζ) ,

Cτ = A2

∫ ∞

−∞

F
( y

A
+ ζ
)

(sech2(y) − sech4(y))dy ≈ 2

3
A2F (ζ) ,

ητ = 2C +
C

A

∫ ∞

−∞

F
( y

A
+ ζ
)

y sech2(y)dy ≈ 2C(1 +O(1/L2)) .

(115)

From these equations it follows that (F (−∞) = 1)

A = A0γ(ζ), Cfin =

√

C2
in +

1

3
A2

0(γ
2(ζ) − γ2

ini) , (116)

where the subscripts ini and fin correspond respectively to the initial and final

values for C and γ.

We shall compare these predictions with direct numerical integrations of

Eq. (110). In Fig. 11 the amplitude of a bright soliton as a function of the po-

sition of the center of mass is plotted for the case of a space dependent variation

of the scattering length in the absence of the parabolic trap. The soliton, initially
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Fig. 11. The squared amplitude of a bright soliton vs center of mass position for different values
of the amplitude As of a kink-like spatial inhomogeneity centered at ζ =30, given by Eq. (116). The
curves, from bottom to top, refer to As = 2.5, 5.0, 7.5, 10.0, respectively. The other parameters
are s = 0.2, Tf = 60, σ = 1, A0 = 1. The soliton is initially at rest, placed at position ζini = 12.5.
In the inset we show the soliton final velocity as a function of As. The open dots are numerical

values while the continuous curve is obtained from Eqs. (115) and (116) as Vfin = A0√
3

√

γ2

fin
− γ2

in.

Obtained from Ref. 66.

at rest, is sucked into the higher scattering length region, and reaches a constant

velocity after passing the inhomogeneity. Also, in this case, there is an excellent

agreement with variational analysis (see the inset of Fig. 11).

The dynamics of matter wave solitons in the presence of a spatially varying

atomic scattering length is also considered in Ref. 72. Using the adiabatic pertur-

bation theory for solitons, the authors have derived the effective equation of motion

of the soliton center of mass η for the variation as = a0 +a1ζ and so γ(ζ) = 1+ δζ,

namely:

ηττ = −Vη +
A2(0)

6γ2(0)

(

∂γ2

∂η

)

, (117)

where

V (η) =
1

2
w2
bη

2 − βη , β =
A2(0)δ

3(1 + δη(0))2
, ωb =

√

ω2
0 − δβ . (118)

Such form of a variation leads to an effective gravitational potential influencing on

the motion of the fundamental soliton. Also the oscillations frequency in the trap

is modified.

5.6. Bright soliton under time-dependent scattering length

The resonant dynamics of the chirped matter wave soliton under oscillating in time

scattering length are considered in Refs. 73 and 74. Using the variational approach

with the Gaussian ansatz for the wavefunction, we obtain the equation for the
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soliton width

aττ =
1

a3
− γ(τ)

a2
− f(τ)a . (119)

When the trap is absent, the dynamics can be analyzed in detail since we have

dealt with the periodically perturbed Kepler problem. Using the action-angle vari-

ables we can find the condition of the nonlinear resonance in the chirped soliton

oscillations.

For nonlinearity management,74 we introduce the small parameter ε = ωz/Ω

and assume that the nonlinear management amplitude is large compared to the

averaged value. We write accordingly

γ(τ) = γ0 +
γ1

ε
sin

(

τ

ε

)

, (120)

and perform the asymptotic analysis following the Kapitsa averaging theorem. Ex-

panding a(τ) = a0(τ) + εa1(τ, τ/ε) + · · · and substituting this form into Eq. (119)

we get a compatibility condition which reads

a0,ττ =
1

a3
0

− a0 +
γ0

a2
0

+
γ2
1

a5
0

. (121)

The initial conditions are: a0(0) = a(0), a′0(0) = a′0(0) − γ1/a
2
0.

Let us first deal with γ0 = 0. If |γ1| ≤ γc, γc = (4/27)1/4 ≈ 0.62, then Eq. (121)

admits a unique fixed point describing the width of the ground state

a2
g =

2√
3

cos

[

1

3
arccos

(

γ2
1

γ2
c

)]

. (122)

If |γ| > γc, then

a2
g =

(

γ2
1

2

)1/3




(

1 +

√

1 − γ4
1

γ4
c

)1/3

+

(

1 −
√

1 − γ4
1

γ4
c

)1/3

 , (123)

and ag increases with γ1 and goes from the value 1 for γ1 = 0 to the asymptotic

value ag ∼ γ
2/3
1 for large γ1. The linear stability analysis of Eq. (121) shows that

the fixed point is stable. The width oscillates near this value with the frequency

ωs =
√

6 − 2/a4
g. In the general case γ0 6= 0, γ1 6= 0, there exists a unique fixed

point which is the unique positive zero of the equation a2 − a6 + γ0a
3 + γ2

1 = 0.

Influence of the random modulations of the nonlinearity on the evolution of

chirped soliton has been considered in Ref. 75. The soliton’s distortion time has

been calculated.

In Ref. 76 the dynamics of the bright soliton in the BEC with time-dependent

atomic scattering length in an expulsive potential ω2
0 < 0 has been studied. Using

the Darboux method the family of exact solutions was found, which shows, that

the bright soliton can be compressed to high local matter densities by increasing

the absolute value of atomic scattering length. The seed solution has been taken

as the modulationally unstable plane wave solution. So the soliton was the bright
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soliton embedded into the background. Previously such solutions has been discussed

intensively in the nonlinear optics (see Refs. 77 and 78).

5.7. Soliton-soliton and N-solitons interaction in the trap potential

The soliton-soliton interaction in the trap can be studied using the perturbation

theory based on the inverse scattering transform.79 Let us look for the solution of

the form of two well separated solitons; i.e., when the relative distance between

them is much more than that of the soliton widths ai = 1/(2νi), i = 1, 2.

u(x, t) = u1(x, t) + u2(x, t) (124)

where the single soliton solution is

un(x, t) = 2νn sech[2νn(x− ξn)]ei2µn(x−ξn)+iδn (125)

with n = 1, 2. Then, the Lagrangian can be represented as

L =
∑

n=1,2

[

i

2
(un,tu

∗
n − c.c.) − 1

2
|un,x|2 +

1

2
|un|4 −

1

2
ω2x2|un|2

]

− iε(u∗1R21[u1] + u∗2R12[u2] + c.c.) , (126)

where

εRmn[un] = i(u∗mu
2
n + 2um|un|2) , (127)

with m,n = 1, 2, m 6= n. And we must neglect un dependence in Rmn when taking

the variational derivative.

Next we apply the variational approach50 to the Lagrangian

L =

∫ +∞

−∞

L(x, t)dx , (128)

where L is given by Eq. (126). From Eqs. (125), (126) and (128), we obtain

L =
∑

n=1,2

[

8νnµnξn,t − 4νnδn,t −
8ν3
n

3
− 8νnµ

2
n +

16

3
ν3
n − 2ω2

(

π2

48νn
+ νnξ

2
n

)]

+ 96ν2
1ν2 exp(−2νr) + 96ν1ν

2
2 exp(−2νr) . (129)

Using the Euler–Lagrange equations

∂L

∂ηi
− d

dt

∂L

∂ηi,t
= 0 , (130)

where ηi are the eight parameters ν1,2, µ1,2, δ1,2 and ξ1,2, we find the evolution

equations for the soliton parameters

dνn
dt

= (−1)n16ν3e−2νr sin(φ) , (131)

dµn
dt

= −1

2
ω2ξn + (−1)n16ν3e−2νr cos(φ) , (132)
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dξn
dt

= 2µn + 4νe−2νr sin(φ) , (133)

dδn
dt

= −1

2
ω2

(

ξ2n − π2

48ν2
n

)

+ 2(ν2
n + µ2

n)

+ 8µνe−2νr sin(φ) + 24ν2e−2νr cos(φ) , (134)

where φ = 2µr+ψ, ν = (ν1 +ν2)/2, µ = (µ1 +µ2)/2, r = ξ1 − ξ2, ψ = δ2− δ1. Here

r is the distance between the solitons and ψ is their relative phase. It was assumed

that r > 0 and |ν1 − ν2| � ν, |µ1 − µ2| � µ, |ν1 − ν2|r � 1 and νr � 1. From this

system we obtain the equation for the relative distance

d2r

dt2
= −ω2(t)r − 64ν3e−2ν|r| sgn(r) cos(φ) , (135)

where sgn(r) = 1, r > 0, = −1, r < 0. In dimensional units it has the form

d2r̄

dt̄2
= −ω2

x(t)r̄ − 64a⊥ω
2
⊥ν

3e−2ν|r̄|/a⊥ sgn(r) cos(φ) , (136)

where ν = N |as|/(2a⊥). This is the equation of motion of a unit mass particle in

anharmonic effective potential

U(r) =
1

2
ω2(t)r2 − 32ν2e−2ν|r| cos(φ) . (137)

Since the perturbation of trap is small ω2
0 � 1, the equation for the relative phase

can be written as

d2φ

dt2
= 128ν4e−2ν|r| sin(φ) . (138)

An inspection of the potential given in Eq. (137) shows that the solitons with the

relative phase φ = 0 (φ = π) have attractive (repulsive) interaction. When φ = π

and ω2(t) = ω2
0 , as we can see from the expression for the effective potential, the

minimum occurs for r at some equilibrium distance re. It corresponds to the stable

bisoliton.39 The parametric resonance in the soliton-soliton interactions considered

recently in Ref. 79. The similar effect stable multisoliton occurs for N-solitons with

π phase difference between neighbor solitons in the trap potential.46

6. Bright Solitons in Dense Condensate in Cigar-Shaped Trap

Now we shall consider dynamics of BEC in the cigar-shaped trap by means of

a variational approach without assumption that the field variables change slowly

along the trap axis (see Ref. 23) when the condition (15) is not fulfilled. To this

end, we approximate the wave function as

ψ =
1√

πb(z, t)
exp

(

− r2

2b2(z, t)

)

exp

(

i

2
α(z, t)r2

)

Ψ(z, t) . (139)
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Here b(z, t) characterizes the local radius of the condensate and α(z, t)r gives the

local radial velocity. Substitution of Eq. (139) into Eq. (11) and the result into the

wave function (10) with integration over the radial coordinate yield an effective 1D

Lagrangian

L1D =
i~

2
(ΨΨ∗

t − Ψ∗Ψt) +
~

2

2m
|Ψz|2 +

1

2
mω2

⊥b
2|Ψ|2

+V (z)|Ψ|2 +
g

4πb2
|Ψ|4 +

~

2
αtb

2|Ψ|2

+
~

2

2m

[(

1

b2
+ α2b2 +

b2z
b2

+
1

2
α2
zb

4

)

|Ψ|2 +
i

2
αzb

2(ΨΨ∗
z − Ψ∗Ψz)

]

. (140)

To simplify the notation, we introduce dimensionless variables:

τ = ω⊥t , z = a⊥ζ , Ψ =
u√
l⊥
, b = l⊥w ,

α =
β

l2⊥
, G = as

l⊥
.

(141)

In the these variables the 1D Lagrangian becomes

L1D =
~

2

ml3⊥

[

i

2
(uu∗τ − u∗uτ ) +

1

2
|uζ |2 +

1

2
w2|u|2 + V (ζ)|u|2

+G
|u|4
w2

+
1

2
βτw

2|u|2 +
1

2
(w−2 + β2w2 + w2

ζw
−2

+
1

2
β2
ζw

4)|u|2 +
i

4
βζw

2(uu∗ζ − u∗uζ)

]

. (142)

Thus, in the above reduction, the evolution of BEC is described by the com-

plex longitudinal wave function u(ζ, τ) and two real functions, w(ζ, τ) and β(ζ, τ),

corresponding to the local mean radius of the condensate and its radial velocity,

respectively. Equations governing the evolution of these variables are to be obtained

from the action principle

S =

∫

Ldt = min, L =

∫

L1Ddζ (143)

with the effective Lagrangian density given by Eq. (142). We have:

iuτ +
1

2
uζζ − V (ζ)u− 3G

|u|2u
w2

−1

2

[

2

w2
+
wζζ
w

+

(

wζ
w

− i

2
βζw

2

)

(|u|2)ζ
|u|2

− 1

2
β2
ζw

4 − i

2
βζζw

2− iβζwwζ

]

= 0 , (144)
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(w2|u|2)τ +

[

i

2
w2(uu∗ζ − u∗uζ) + w4|u|2βζ

]

ζ

= 2βw2|u|2 , (145)

βτ =
wζζ
w3

+
1 − w2

ζ

w4
+
wζ
w3

(|u|2)ζ
|u|2 − 1 − β2 − β2

ζw
2

+
i(uζu

∗ − uu∗ζ)

2|u|2 βζ + 2G
|u|2
w4

, (146)

where the longitudinal wave function is normalized as follows
∫

|u|2dζ = N . (147)

Thus, we have transformed the 3D GP equation to a quasi-1D form for the case of

elongated cigar-shaped geometry when the radial distributions of the condensate

density and its radial velocity can be approximated by simple Gaussian functions.

The variables in Eqs. (144)–(146) depend only on one spatial coordinate — a strong

advantage in numerical simulations. Besides that, systems (144)–(146) can be ana-

lyzed analytically in some important limiting cases.

In a stationary state all velocities are equal to zero (v = 0, β = 0), density

ρ does not depend on τ and the condensate wave function u(ζ, τ) depends on

τ only through the phase factor exp(−iµτ), where µ is dimensionless chemical

potential. Setting β = 0 and introducing the stationary variables U(ζ) and σ(ζ) by

the formulae

u(ζ, τ) = e−iµτU(ζ) , w2(ζ, τ) = 1/σ(ζ) , (148)

after some simple algebra we obtain from Eqs. (144)–(146) the following system

Uζζ +

(

2µ− 2V (ζ) − σ − 1

σ
−

σ2
ζ

4σ2

)

U − 4GσU3 = 0 , (149)

1

2

(

σζU
2

σ

)

ζ

−
(

σ − 1

σ

)

U2 − 2GσU4 = 0 . (150)

Systems (149)–(150) has the energy functional

E =

∫

[

1

2
U2
ζ + V (ζ)U2 +GσU4 +

1

2

(

σ +
1

σ
+

σ2
ζ

4σ2

)

U2 − µU2

]

dζ . (151)

Here integrand can be considered as a Lagrangian with the spatial variable ζ playing

the role of time.

First of all let us consider the limit of a low density BEC:

|G|U2 � 1 . (152)

In the dimensional variables, with account of the estimate U 2 ∼ |Ψ|2l⊥ ∼ n1l⊥
(where n1 is the longitudinal density of the condensate), condition (152) coincides

with the condition (15). Since the characteristic length in the axial direction cannot
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be less than unity (i.e. l⊥ in the dimensional units), from Eq. (150) we find in this

limit

σ = 1 + σ1 , |σ1| ∼ |G|U2 � 1 . (153)

Taking estimate (153) into account, we reduce Eq. (149) to the standard (station-

ary) 1D NLS equation

Uζζ + 2(µ− 1 − V (ζ))U − 4GU 3 = 0 . (154)

This equation leads to well-known soliton solutions on the NLS equation

U(ζ) =
U0

cosh(U0

√

2|G| ζ)
, (155)

where U0 is the amplitude of the soliton connected with the number of atoms

N =
∫

U2dζ by the relation

N = U0

√

2

|G| , (156)

and µ′ = µ−1 = −|G|U2
0 . Then condition (152) of applicability of the NLS equation

can be written in the form [see (15)]

|µ′| = |G|U2
0 ∼ (|G|N)2 � 1 . (157)

It is clear that this condition breaks down for large enough number of atoms N ∼
1/|G| and one cannot neglect the effect of the atomic interaction on the transverse

size of BEC. The transverse degrees of freedom lead to the collapse instability of

BEC (see e.g. Ref. 10), which, as is known, also takes place in BEC confined in a

cigar-shaped trap. Numerical results of Refs. 20 and 22 indicate that BEC in the

cigar-shaped trap collapses for

|G|N > 0.676 (158)

and in this region of parameters the soliton solution ceases to exist. Our quasi-

1D approach captures this essential property of the attractive BEC, and hence, in

our approach, the bright soliton solution can be studied in the whole region of its

existence.

We have solved numerically the systems (149) and (150) with G < 0 and V = 0

under the boundary conditions

U(ζ) → 0 at ζ → ±∞ . (159)

In Fig. 12 we show the wave function amplitude and transverse radius profiles

of BEC for several values of |G|N . It is clearly seen that the amplitude of the

soliton increases while its transverse radius decreases with growth of |G|N . For

small |G|N the solution is well approximated by the NLS solution (155), especially

the amplitude profile. At ζ → ±∞ the radius approaches 1. What corresponds to the

small amplitude limit when the transverse wave function is given by the oscillator
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Fig. 12. Wavefunction amplitude and transverse radius (W ) profiles of BEC for several values of
|G|N , as given in the left frame.
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Fig. 13. The dependence of µ on |G|N in quasi-1D approximation (solid line) and in the NLS
equation case (dashed line).

ground state. A fast decrease of w in the center of the soliton with growth of |G|N
precedes the collapse instability of BEC.

To clarify the transition to collapse, we show the dependence of µ on |G|N in

the presented quasi-1D approximation (the solid line) and in the NLS equation case

(the dashed line) in Fig. 13. We see that ∂N/∂µ vanishes at |G|N ∼= 0.73, which is

in reasonably good agreement with the exact 3D critical value given by (158).

Finally, the axial width of this soliton solution is about unity (i.e. ∼ l⊥ in

the dimensional units) in qualitative agreement with the features of bright solitons

observed experimentally in Refs. 15 and 16.

7. Reduction of Gross–Pitaevskii Equation in Pancake-Type Trap

to 2D NLS Equation

Let us consider the case of tight trap in z-direction, so ωz � ω⊥ and s2‖ � l2⊥.

We assume that the quantum pressure in z-direction much larger than a nonlinear
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interaction, i.e.

~
2

2ms2‖
� g|ψ|2, |ψ|2 ∼ N

2πl2⊥s‖
, (160)

where s‖ (∼ l‖) is the condensate size in z-direction. Note that l⊥ 6= s⊥ because

the transverse size of the condensate is determined by the attractive interaction

between atoms and not by the trap potential. Then we have the condition

N |as|l‖
s2⊥

� 1 , (161)

which means that the longitudinal motion is reduced to zero quantum oscillations.

We represent the condensate wave function in the form

ψ = Φ(x, y; t)R(z) , (162)

where R(z) is the ground state wave function of the axial motion of atoms,

R(z) =
1

π1/4l
1/2
‖

exp

(

− z2

2l2‖

)

. (163)

As in Sec. 2, we obtain the equation for the transverse wave function Φ

i~Φt = − ~
2

2m
∇2

⊥Φ +
mω2

⊥

2
r2⊥Φ + g2D|Φ|2Φ , (164)

with g2D = g
√

2πl‖. The condensate size can be estimated from the Hamiltonian

H =

∫

d2r

[

~
2

2m
|∇Φ|2 +

mω2r2

2
|Φ|2 − g2D

2
|Φ|4

]

. (165)

It can be approximated by the order of magnitude as

H ∼ ~
2N

ms2⊥
+mω2Ns2⊥ +

g2DN
2

s2⊥
. (166)

The minimization with respect to s⊥ gives

s⊥ ∼ l⊥

(

1 − |as|N
l‖

)1/4

. (167)

Thus we can conclude that the condensate exists for N < Nc ∼ l‖/|as|. Using the

inequality (161) we obtain that the parameters should satisfy the condition

N |as|l‖
l2⊥

(

1 − N |as|
l‖

)−1/2

� 1 . (168)

The dimensionless form of Eq. (164) can be obtained by the change of variables

τ = tω⊥ , ρ =

√
2r⊥
l⊥

, u =

√

|g2D|
~ω⊥

Φ . (169)
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Thus we arrive at the dimensionless 2D GP equation

iuτ = −∇2
⊥u+

1

4
ρ2u+ σ|u|2u, σ = ±1 . (170)

8. Stable Bright Solitons in Multidimensional Condensate.

Nonlinearity Management.

The coefficient in front of the cubic term of the Gross–Pitaevskii equation (1), pro-

portional to the scattering length, may be both positive and negative, which cor-

responds, respectively, to repulsive and attractive interactions between the atoms.

In the case of an attractive interaction, a soliton may be formed in an effectively

one-dimensional (1D) condensate;15,16 however, in 2D and 3D cases the attraction

results in the collapse of the condensate (weak and strong collapse, respectively80)

if the number of atoms exceeds a critical value.

Recently developed experimental techniques81 make it possible to effectively

control the sign of the scattering length using an external magnetic field because

the interaction constant can be changed through the Feshbach resonance.82 This

technique makes it possible to quickly reverse (in time) the sign of the interaction

from repulsion to attraction, which gives rise, via the onset of collapse, to an abrupt

shrinking of the condensate, followed by a burst of emitted atoms and the formation

of a stable residual condensate.81

A natural generalization of this approach for controlling the strength and sign

of the interaction between atoms and, thus, the coefficient in front of the cubic

term, is the application of a magnetic field resonantly coupled to the atoms. In

the general case, it consists of constant (dc) and time-dependent (ac) components.

The dynamical behavior of 2D and 3D condensates in this case is then an issue of

straightforward physical interest, as it may be readily implemented in experiments.

This is the subject of the present section.83

It is noteworthy that, in the 2D case, this issue is similar to a problem which

was recently considered in nonlinear optics for (2+1)D spatial solitons (i.e., self-

confined cylindrical light beams) propagating across a nonlinear bulk medium with

a layered structure, so that the size84 and, possibly, the sign85 of the Kerr (nonlin-

ear) coefficient are subject to a periodic variation along the propagation distance

(it plays the role of the evolutional variable, instead of time, in the description of

optical spatial solitons). The same optical model also makes sense in the (3+1)D

case, because it applies to the propagation of “light bullets” (3D spatiotemporal

solitons86) through the layered medium.85 Previously, a quasi-1D model was con-

sidered in which the BEC stability was affected by a rapid temporal modulation

applied to the trapping potential (rather than to the spatially uniform nonlinearity

coefficient)87 and the macroscopic quantum interference and resonances have been

studied in Ref. 88. Resonances in 2D and 3D BEC with periodically varying atomic

scattering length has been considered in Refs. 88–90. The main issue considered in

this section is a possibility of self-localization of the condensate under the action of

the ac field.
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8.1. Averaging of the variational equations

Let us take the mean-field GP equation for the single-particle wave function, as

given by Eq. 1, without the trap:

i~
∂ψ

∂t
= − ~

2

2m
∇2ψ + g|ψ|2ψ . (171)

We will assume the scattering length to be time-modulated so that the nonlinear

coefficient in Eq. (1) takes the form

g = g0 + g1 sin(χt) , (172)

where a0 and a1 are the amplitudes of dc and ac parts, and χ is the ac-modulation

frequency.

Usually an external trapping potential is included to stabilize the condensate.

We have omitted it because it does not play an essential role. This is also the case in

some other situations, e.g. the formation of a stable Skyrmion in a two-component

condensate.91. In fact, we will demonstrate that the temporal modulation of the

nonlinear coefficient, combining the dc and ac parts as in Eq. (173) may, in a certain

sense, replace the trapping potential. Another caveat concerning the present model

is that, if the frequency of the ac drive resonates with a transition between the

ground state of the condensate and an excited quasi-particle state, the mean-field

description based on the GP equation will not be adequate.

We now cast Eq. (171) in a normalized form by introducing a typical frequency

Ω ∼ 2gn0/~, where n0 is the condensate density and rescale the time and space

variables as t′ = Ωt r′ = r
√

2mΩ/~. This leads to the following equation where the
′ have been omitted

i
∂ψ

∂t
= −

(

∂2

∂r2
+
D − 1

r

∂

∂r

)

ψ − [λ0 + λ1 sin(ωt)] |ψ|2ψ , (173)

in which it is implied that ψ depends only on t and r, D = 2 or 3 is the spatial

dimension, λ0,1 ≡ −g0,1/(Ω~), ω ≡ χ/Ω.

Note that λ0 > 0 and λ0 < 0 in Eq. (173) correspond to the self-focusing and

self-defocusing nonlinearity, respectively. Rescaling the field ψ, we will set |λ0| ≡ 1,

so that λ0 remains a sign-defining parameter.

The next step is to apply the variational approach (VA) to Eq. (173). This

approximation was originally proposed92 and developed in nonlinear optics, first

for 1D problems and, later for multi-dimensional models (see a recent review93). A

similar technique was elaborated for the description of the multidimensional BEC

dynamics based on the GP equation.94

To apply VA in the present case, we notice that the Lagrangian density gener-

ating Eq. (173) is

L(ψ) =
i

2

(

∂ψ

∂t
ψ∗ − ∂ψ∗

∂t
ψ

)

−
∣

∣

∣

∣

∂ψ

∂r

∣

∣

∣

∣

2

+
1

2
λ(t)|ψ|4 , (174)
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where λ(t) ≡ λ0 + λ1 sin(ωt), and the asterisk stands for the complex conjugation.

The variational ansatz for the wave function of the condensate is chosen as the

Gaussian,92

ψg(r, t) = A(t) exp

(

− r2

2a2(t)
+

1

2
ib(t)r2 + iδ(t)

)

, (175)

where A, a, b and δ are the amplitude, width, chirp and overall phase, respectively,

which are assumed to be real functions of time. We did not include the degree

of freedom related to the coordinate of the condensate’s center as the trapping

potential although not explicitly included into the model, it is assumed to prevent

the motion of the condensate as a whole.

Following the standard procedure,93 we insert the ansatz into the density (174)

and calculate the effective Lagrangian,

Leff = CD

∫ ∞

0

L(ψg)r
D−1dr , (176)

where CD = 2π or 4π in the 2D or 3D cases, respectively. Finally the evolution

equations for the time-dependent parameters of the ansatz (175) are derived from

Leff using the corresponding Euler–Lagrange equations. Subsequent analysis, as

well as the results of direct numerical simulations, are presented separately for the

2D and 3D cases in the two following sections.

8.2. Averaging of the variational equations in 2D case

In the 2D case, the calculation of the effective Lagrangian (176) yields

L
(2D)
eff = π

(

−1

2
a4A2ḃ− a2A2δ̇ −A2 − a4A2b2 +

1

4
λ(t) a2A4

)

, (177)

where the overdot stands for the time derivative. The Euler–Lagrange equations

following from this Lagrangian yield, the conservation of the number of atoms N

in the condensate,

πA2a2 ≡ N = const , (178)

with the expressions for the chirp and width given by

ȧ = 2ab, ḃ =
2

a4
− 2b2 − λ(t)N

2πa4
, (179)

and a closed-form evolution equation for the width:

d2a

dt2
=

−Λ + σ sin(ωt)

a3
, (180)

Λ ≡ 2(λ0N/(2π) − 2) , σ ≡ −λ1N/π . (181)

In the absence of an ac component, σ = 0, Eq. (180) conserves the energy

E2D = (ȧ2 − Λa−2)/2. Obviously, E2D → −∞ as a→ 0, if Λ > 0, and E2D → +∞
as a → 0, if Λ < 0. This means that, in the absence of the ac component, the 2D
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pulse is expected to collapse if Λ > 0, and to spread out if Λ < 0. The case Λ = 0

corresponds to the critical number of particles in the condensate (the so-called

“Townes soliton”). Note that a numerically exact value of the critical number is

(in the present notation) N = 1.862 (Ref. 80), while the variational equation (181)

yields N = 2 (if λ0 = +1).

It is natural to consider in particular the case when the ac component of the

nonlinear coefficient oscillates at a high frequency. In this case, Eq. (180) can be

treated analytically by means of the Kapitsa averaging method. To this end, we set

a(t) = ā+δa, with |δa| � |ā|, where ā varies on a slow time scale and δa is a rapidly

varying function with a zero mean value. After straightforward manipulations, we

derive the following equations for the slow and rapid variables,

d2

dt2
ā = −Λ(ā−3 + 6ā−5〈δa2〉) − 3σ〈δa sin(ωt)〉ā−4 , (182)

d2

dt2
δa = 3δaΛā−4 + σ sin(ωt)ā−3 . (183)

where 〈· · ·〉 stands for averaging over the period 2π/ω. A solution to Eq. (183) is

δa(t) = − σ sin(ωt)

ā3(ω2 + 3ā−4Λ)
, (184)

the substitution of which into Eq. (182) yields the final evolution equation for the

slow variable,

d2

dt2
ā = ā−3

[

−Λ− 3Λσ2

(ω2ā4 + 3Λ)2
+

3

2

σ2

ω2ā4 + 3Λ

]

. (185)

To examine whether collapse is enforced or inhibited by the ac component of

the nonlinearity, one may consider Eq. (185) in the limit ā → 0. In this limit, the

equation reduces to

d2

dt2
ā =

(

−Λ +
σ2

6Λ

)

ā−3 . (186)

It immediately follows from Eq. (186) that, if the amplitude of the high-frequency ac

component is large enough, σ2 > 6Λ2, the behavior of the condensate (in the limit

of small ā) is exactly opposite to that which would be expected in the presence of

the dc component only: in the case Λ > 0, bounce should occur rather than collapse,

and vice versa in the case Λ < 0.

On the other hand, in the limit of large ā, Eq. (185) takes the asymptotic

form d2ā/dt2 = −Λā−3, which shows that the condensate remains self-confined

in the case Λ > 0 i.e., if the number of atoms exceeds the critical value. This

consideration is relevant if ā, though being large, remains smaller than the limit

imposed by an external trapping potential. Thus, these asymptotic results guarantee

that Eq. (185) gives rise to a stable behavior of the condensate, both the collapse

and decay (spreading out) being ruled out if

σ >
√

6Λ > 0 . (187)
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In the experiments with 7Li with the critical number ∼ 1500 atoms, for example, if

we have initially 1800 atoms (i.e.N/2π = 2.2) to stabilize the condensate this means

that the atomic scattering length for λ0 = 1 should be harmonically modulated with

the amplitude σ = 0.98. In fact, the conditions (187) ensure that the right-hand

side of Eq. (185) is positive for small ā and negative for large ā. This implies that

Eq. (185) must give rise to a stable fixed point (FP). Indeed, when the conditions

(187) hold, the right-hand side of Eq. (185) vanishes at exactly one FP,

ω2ā4 =
3σ2

4Λ
+

√

3

(

3σ4

16Λ2
− 1

)

− 3Λ , (188)

which can be easily checked to be stable through the calculation of an eigenfre-

quency of small oscillations around it.

Direct numerical simulations of Eq. (180) produce results (not shown here)

which are in exact correspondence with those provided by the averaging method,

i.e., a stable state with a(t) performing small oscillations around the point (188).

For the sake of comparison with the results obtained by means of an alternative

approach in the next subsection, we also need an approximate form of Eq. (185)

valid in the limit of small Λ (i.e., when the number of atoms in the condensate is

close to the critical value) and very large ω:

d2

dt2
ā = − Λ

ā3
+

3

2

σ2

ω2ā7
. (189)

It should be noted that the Kapitsa averaging method assumes the strong non-

linearity management. Indeed δa ∼ (λ1/ω
2)/ā3. We consider λ1 ∼ ω � 1,

this corresponds to the strong management case. Since the averaged width ā ∼
(λ2

1/(ω
2(N − Nc))

1/4 ∼ O(1), we have for δa the estimate δa ∼ 1/ω = ε � 1

and so the correction to the averaged width is small. To calculate the value of the

amplitude of the high-frequency ac component necessary to stop the collapse, we

note that a characteristic trap frequency is Ω ∼ 100 Hz. So, for a modulation fre-

quency ∼ 3 kHz, which may be regarded as a typical “high modulation frequency”,

the dimensionless ω is ∼ 30. If the initial dimensionless number of atoms is, for

example, N/2π = 2.2 so that according to Eq. (181), Λ = 0.4 (this corresponds to

the 7Li condensate with ≈ 1800 atoms, the critical number being ≈ 1500), and the

parameters of modulation are λ0 = 1, λ1 = 2.3, σ = 10, then the stationary value

of the condensate width found from Eq. (188) is ast = 0.8l,where l =
√

mΩ/~ is

the healing length.

Thus the analytical approach based on the VA and the subsequent use of the

assumption that the number of atoms slightly exceeds the critical value, leads to an

important prediction: in the 2D case, the ac component of the nonlinearity, acting

jointly with the dc one corresponding to attraction, may give rise not to collapse,

but rather to a stable soliton-like oscillatory condensate state which confines itself

without the trapping potential. It is relevant to mention that a qualitatively similar

result, viz. the existence of stable periodically oscillating spatial cylindrical solitons
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in a bulk nonlinear-optical medium consisting of alternating layers with opposite

signs of the Kerr coefficient, was reported in Ref. 85, where this result was obtained

in a completely analytical form on the basis of the VA, and was confirmed by

direct numerical simulations. The numerical simulations confirm these predictions,

as observed in Ref. 95.

The same type of equation for the soliton width can also be obtained by the

moments method. Using the theory of ODE’s with the periodic coefficients from

Ref. 96 the conditions for the blow up and the bounded oscillations have been found.

For example, for the critical case the equation for the width is

att =
Q1 +Q2g(t)

a3
=
p(t)

a3
, (190)

where Q1, Q2 are moments of NLSE and p(t) is a continuous and T -periodic

function.

It was found that a necessary condition for existence of bound state is

〈p〉 =
1

T

∫ T

0

p < 0 . (191)

The function p(t) can be parametrized as p(t) = α + βc(t), with 〈c〉 = 0. For the

existence of the bound state it is necessary that

α+ |β| = 0 . (192)

This condition is well satisfied for the strong nonlinearity management regime with

β ∼ 1/ε� 1. The parameter α is proportional to N −Nc, where Nc is the critical

norm and equal to the norm of the Townes soliton solution. The Townes soliton

solution is the separatrix solution separating the regions of the collapsing and de-

caying states (see the next subsection for details). If the norm is larger than the

Townes norm Nc, then the wave packet collapses, or else if the norm is lower then

it decays. The numerical simulation, performed in Refs. 96 and 97 for the critical

NLSE (D = 2), shows that the stabilized solution indeed exists and represents the

Townes soliton with modulated parameters.

When the initial data is taken in the form of the Gaussian function, the ODEs

(190) does not describe correctly the region of the existence of the bound state.

Numerical simulations show that the Gaussian initial pulse ejects a significant part

of the wave in the form of radiation. The remaining part of the wave packet has

the form of the Townes soliton with parameters varying in time. In Ref. 98 it was

proven that periodically varying any sign definite nonlinearity cannot prevent the

collapse.

8.3. Averaging of the Gross–Pitaevskii equation and Hamiltonian

Assuming that the ac frequency ω is large, we rewrite the GP equation in a form,

i∂ψ/∂t+ ∇2ψ + λ(ωt)|ψ|2ψ = 0 . (193)
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To derive an equation governing the slow variations of the field, we use the multiscale

approach, writing the solution as an expansion in powers of 1/ω and introducing the

slow temporal variables, Tk ≡ ω−kt, k = 0, 1, 2, . . . , while the fast time is ζ ≡ ωt.

Thus, the solution is sought for as

ψ(r, t) = A(r, Tk) + ω−1u1(ζ, A) + ω−2u2(ζ, A) + · · · , (194)

with 〈uk〉 = 0, where 〈· · ·〉 stands for the average over the period of the rapid mod-

ulation, and we assume that λ0 = +1 (i.e., the dc part of the nonlinear coefficient

corresponds to attraction between the atoms).

The evolution equation for the slowly varying field A(x, T0), at the order

ω−2 is:

i
∂A

∂t
+ ∇2A+ |A|2A+ 2M

(

σ

ω

)2

[|A|6A− 3|A|4∇2A

+ 2|A|2∇2(|A|2A) +A2∇2(|A|2A∗)] = 0 , (195)

where σ is the amplitude of the ac component. Eq. (195) is valid in both 2D and

3D cases.

For a further analysis of the 2D case, we apply a modulation theory developed in

Ref. 99. The solution is searched for in the form of a modulated Townes soliton. The

Townes soliton is a solution to the 2D NLS equation in the form ψ(r, t) = eitRT (r),

where the function RT (r) satisfies the boundary value problem

R′′
T + r−1R′

T −RT +R3
T = 0 , R′

T (0) = 0 , RT (∞) = 0 . (196)

For this solution, the norm N and the Hamiltonian H take the values,

NT ≡
∫ ∞

0

R2
T (r)rdr = Nc ≡ 1.862 , HT = 0 . (197)

To develop a general analysis, we assume that the solution with the number

of atoms close to the critical value may be approximated as a modulated Townes

soliton, i.e.

A(r, t) ≈ [a(t)]−1RT (r/a(t))eiS , S = σ(t) +
ȧr2

4a
, (198)

σ̇ = a−2, with some function a(t) (where the overdot stands for d/dt). If the initial

power is close to the critical value, i.e., when |N −Nc| � Nc and the perturbation

is conservative, i.e.

Im

∫

dV [A∗F (A)] = 0 , (199)

as in our case, it is possible to derive an evolution equation for the function a(t),

starting from the approximation (198). The equation of modulation theory for width

is

a3att = −β0 +
σ2

4M0ω2
f1(t) , (200)
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where

β0 = β(0) − σ2f1(0)

4M0ω2
, β(0) =

(N −Nc)

M0
, (201)

and M0 ≡ (1/4)
∫∞

0
r3dr R2

T ≈ 0.55. The auxiliary function is given by

f1(t) = 2a(t) Re

[

1

2π

∫

dxdyF (AT )e−iS(RT + ρ∇RT (ρ))

]

. (202)

In the lowest-order approximation, the equation takes the form

d2a

dt2
= −Λ1

a3
+
Cσ2

ω2a7
, (203)

where Λ1 = (N −Nc)/M0 − Cσ2/(ω2a4
0) and C is

C ≡ 3

M0

∫ ∞

0

dρ

[

2ρR4
T (R′

T )2 − ρ2R3
T (R′

T )3 − 1

8
ρR8

T

]

≈ 39 . (204)

Thus the averaged equation predicts the arrest of collapse by the rapid modulations

of the nonlinear term in the 2D GP equation.

It should be noted that as shown in Ref. 100, in general, the averaged equation

in the case of a weak nonlinearity management (corresponding to the case when in

Eq. (191) parameters α, β ∼ O(1)), is insufficient to describe correctly the blowup

domains. But in the case of the initial wave packet close in the norm to the Townes

soliton solution, we are in the region of the validity of the condition (191), namely

α ∼ |N − Nc|/Nc ∼ ε � 1 and β ∼ O(1) so the bound state exist (see also

Ref. 97). The numerical simulations performed in Ref. 101 has dealt with the initial

wave packet taken as the Townes soliton. Since the stabilization of the soliton with

the norm N = 1.09Nc has been observed for σ in the interval (5π, 15π) and the

frequency ω in the interval (20, 250), we can mention the particular value σ/ω =

8π/250 ≈ 0.1. Dynamical stabilization of critical NLSE in the model of 1D quintic

NLSE with nonlinear management of the cubic term has been studied in Ref. 97.

The numerical simulations also showed the stabilization of the initial wave packet

in the form of the Townes soliton for N = 1.08Nc and σ = 10, ω = 50.

The evolution of the width of the soliton is described by the equation of motion

of a unit mass particle in the effective anharmonic potential.

Ueff = − Λ1

2a2
+

Cσ2

6ω2a6
. (205)

The effect of rapid modulations of nonlinearity appears as the additional strong

repulsion at small widths a ∼ a−6. This repulsion leads to the existence of a stable

2D bright soliton.

The same effect was observed in 1D dispersion-management for optical solitons

in fibers — the Kapitsa averaging in the related Kepler problem leads to a new

fixed point corresponding to the dispersion-managed optical soliton,102–104 and the

Hamiltonian averaging method in Refs. 105 and 106. Strong dispersion management

can also stabilize 2D bright soliton.107
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Let us estimate the value of the fixed point for the numerical simulations per-

formed in Ref. 84. In this work the stable propagation of soliton has been observed

for a two-step modulation of the nonlinear coefficient in 2D NLSE. The modula-

tion of the nonlinear coefficient was λ = 1 + σ if T > t > 0, and λ = 1 − σ for

2T > t > T . The parameters in the numerical simulations have been taken as

T = σ = 0.1, N/(2π) = 11.726/(2π), with the critical number as Nc = 11.68/(2π).

The map strength M is M = σ2T 2/24. For these values we have ac = 0.49 that

agreed with the value ac ≈ 0.56 from the numerical experiment.

Equation (195) can be written in the Hamiltonian form using the change of

variables

q = A+Mε2|A|4A+O(ε4) , (206)

where ε = σ/ω. In the 1D case we obtain the equation for q(x, t)

iqt + qxx + λ0|q|2q + 2Mε2[2(|q|2)xx|q|2 + ((|q|2)x)2]q = 0 . (207)

This equation can be written in the form iqt = δH/δq∗ with the Hamiltonian

H =

∫ ∞

−∞

dx

[

|qx|2 −
λ2

0

2
|q|4 + 2Mε2|q|2((|q|2)x)2

]

. (208)

This expression coincides 2Mε2 = σ̃2 with the Hamiltonian obtained for the case of

a strong nonlinearity management in the paper.108,109 The discrete version of this

Hamiltonian can be obtained from the Legendre transformation of the Lagrangian

of the work,110 where a weak nonlinearity management in discrete NLS lattice

has been considered. Using this averaged equation in the work108 the matter-wave

solitons were found numerically. It was shown that there is no threshold on the

existence of dark solitons of large amplitudes whereas such a threshold exists for

bright solitons.

The averaged 2D, 3D GP equation for the case of strong nonlinearity manage-

ment in the Hamiltonian form is derived recently in Ref. 100. The Hamiltonian has

the form analogous to Eq. (208) and equal to

H =

∫

dDr

[

|∇q|2 − λ0

2
|q|4 + σ̃2|q|2|∇|q|2|2

]

, (209)

where σ̃2 =
∫ 1

0 λ
2
−1(τ)dτ , λ−1 =

∫ 1

0 λ1dτ
′ −
∫ 1

0

∫ τ

0 λ1dτ
′dτ .

8.4. Nonlinearity management of 2D vectorial solitons

Analogous idea can be applied for the stabilization of 2D multicomponent BEC.

The GP equation is

iuj,t = −1

2
∇2uj + g(t)

(

n
∑

k=1

|uk,j |
)

uj , (210)

where uj are the wavefunctions of each of atomic species, j = 1, . . . , N , ∆ =

∂2/∂x2 + ∂2/∂y2, ajk are the nonlinear coupling coefficients, g(t) is the periodic
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function of time. This system is the extension of the Manakov system to 2D case

with variable nonlinearity.

To construct solutions of the system (210) it is useful to use the stabilized scalar

(n = 1) Townes solitons ΦS , namely uj = ΦSj
= αjΦS . with the condition

αj1α
2
1 + · · · αjnα2

n = 1 , j = 1, . . . , n . (211)

By numerical simulations, it has been showed in Ref. 111 that for n = 2; 4 these

new vector solitons remain stabilized. This showed the possibility of obtaining of the

stabilized vector solitons after slow collisions of the stabilized Townes solitons. The

application of such an approach for the three-dimensional vector solitons remains

open.

9. Nonlinearity Management of 3D Matter Wave Soliton

Applying the methods developed in the previous section we will derive here the

averaged variational equations for 3D case.

The calculation of the effective Lagrangian (176) in the 3D case yields

L
(3D)
eff =

1

2
π3/2A2a3

[

−3

2
ḃa2 − 2δ̇ +

1

2
√

2
λ(t)A2 − 3

a2
− 3b2a2

]

, (212)

as in Eq. (177). The Euler–Lagrange equations applied to this Lagrangian yield the

mass conservation,

π3/2A2a3 ≡ N = const , (213)

with the expression for the chirp given by

ȧ = 2ab , ḃ =
2

a4
− 2b2 − λ(t)N

2
√

2π3/2a5
. (214)

The evolution equation for the width of the condensate in the normalized form is

given by

d2a

dt2
=

4

a3
+

−Λ + σ sin(ωt)

a4
, (215)

where the amplitudes of the dc and ac components of the nonlinearity are Λ ≡
2−1/2π−3/2λ0N and σ ≡ −2−1/2π−3/2λ1N . In the absence of the ac term, σ = 0,

Eq. (215) conserves the energy

E3D =
1

2
ȧ2 + 2a−2 − 1

3
Λa−3 . (216)

Obviously, E3D → −∞ as a → 0, if Λ > 0, and E3D → +∞ if Λ < 0. Hence, one

will have collapse or decay (spreading out) of the pulse, respectively, in these two

cases.

As ω is large enough it seems natural to apply the Kapitsa’s averaging method to

this case too. Doing it the same way as was described in detail in the previous section

for the 2D case, we find the rapidly oscillating correction δa(t), as in Eq. (184),

δa = − σ sin(ωt)ā

ω2ā5 − 12ā+ 4Λ
, (217)
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and then arrive at the evolution equation for the slow variable ā(t) [as in Eq. (185)]:

d2ā

dt2
=

4

ā3
− Λ

ā4
+

2σ2

ā4(ω2ā5 + 4Λ− 12ā)
. (218)

In the limit ω � 1 the averaged equation has the form considered in Refs. 112

and 113

ātt =
4

ā3
− Λ

ā4
+

2ε2

ω2ā9
. (219)

Again we have the strong repulsion potential for ā→ 0, namely

U ∼ σ2

ω2ā8
. (220)

This potential arrest the collapse of the condensate. The threshold in σ2/ω2 exists

for the minimum of the effective potential. These predictions have been confirmed in

the numerical simulations of the full 3D GP equation with time varying scattering

length.112 It is still unclear if the observed state is stable. The numerical simulations

performed in Ref. 113 shows that the state is a metastable one. Predictions of the

variational approach agree with the numerical data qualitatively only. After a long

time the parametric instability is developed. To stabilize the soliton the dissipation

can be worked on. The dissipation can be included into the GP equation by a

phenomenological way114–116

i(1 − iγ)~ψt = − ~
2

2m
∇2ψ + Vtrψ + g(t)|ψ|2ψ + iγµψ , (221)

where γ is a phenomenological dissipation constant, which is determined experi-

mentally, and µ is the chemical potential. It is shown by means of the numerical

simulations that the state is absolutely stable. It should be noted that in distinction

from the 2D case the shape is strongly deviated from the Gaussian one. It can ex-

plain why the predictions of the VA have a qualitative character only. To describe

these numerical results it is necessary to develop analytical descriptions beyond of

the variational one.

10. Conclusion

In summary, we present in this review the modern status of investigations of the

dynamics of bright solitons in Bose–Einstein condensates. We analyze solitons in

the highly elongated trap, as well as in the pancake and 3D configurations.

The formalism, as detailed above, explains recent experiments on the genera-

tion of matter wave soliton trains as the nonlinear Fresnel diffraction. We employ

analytical approaches to describe the generation of trains of bright and dark soli-

tons from weak periodic modulations of density by adiabatic variations of atomic

scattering length in time. Considering recent suggestions, we have also analyzed

the control of solitons in BEC, by means of variations in time and/or space of the

two-atom scatering length or the trap parameters.
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There are still many problems unsolved under intensive investigations. Among

them, we note the following: solitons in mixed BECs like multi-components and

spinor BECs,117 solitons in Fermi–Bose mixtures,118 nonlinearity and dispersion

management for nonlinear periodic waves,119 multidimensional solitons,120,121 and

condensates with three-body interactions.122 Furthermore, it is also interesting to

analyze the role of different nonlocalities on the soliton stability, the existence of

solitons in systems with long-range interactions between atoms, nonlinear atomic

interferometers with solitons, dynamics of quantum shock waves and trains of soli-

tons using different potentials.
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