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We consider formation of dissipationless shock waves in Bose-Einstein condensates with repulsive interac-
tion between atoms. It is shown that for big enough initial inhomogeneity of density, interplay of nonlinear and
dispersion effects leads to wave breaking phenomenon followed by generation of a train of dark solitons.
Analytical theory is confirmed by numerical simulations.
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Experiments on free expansion of Bose-Einstein conden-
sate (BEC) have shown[1] that evolution of large and
smooth distributions of BEC is described very well by hy-
drodynamic approximation[2] where dispersion and dissipa-
tion effects are neglected. At the same time, it is well known
from classical compressible gas dynamics(see, e.g.,[3]) that
typical initial distributions of density and velocity can lead to
wave breaking phenomenon when formal solution of hydro-
dynamical equations becomes multivalued. It means that
near the wave breaking point one cannot neglect dispersion
and/or dissipation effects which prevent formation of a mul-
tivalued region of a solution. If the dissipation effects domi-
nate the dispersion ones, then the multivalued region is re-
placed by the classical shock, i.e., narrow layer with strong
dissipation within, which separates smooth regions with dif-
ferent values of density, fluid velocity and other physical
parameters. This situation was studied in classical gas dy-
namics and found many practical applications. If, however,
the dispersion effects dominate dissipation ones, then the re-
gion of strong oscillations is generated in the vicinity of the
wave breaking point[4,5]. Observation of dark solitons in
BEC [6–8] shows that the main role in dynamics of BEC is
played by dispersion and nonlinear effects taken into account
by the standard Gross-Pitaevskii(GP) equation[9], and dis-
sipation effects are relatively small and can be considered as
perturbation. Hence, there are initial distributions of BEC
which can lead to formation of dissipationless shock waves.
Here we shall consider such a possibility.

The starting point of our consideration is the fact that the
sound velocity in BEC is proportional to the square root
from its density(see, e.g.,[9] and references therein). Thus,
if we create inhomogeneous BEC with high density hump
(with density,r1) in the center of lower density distribution
(with density,r0), and after that release this central part of
BEC, then the high density hump will tend to expand with
velocity ,Îr1 greater than the sound velocity,Îr0 of
propagation of disturbance in lower density BEC. As a result,

wave breaking and formation of dissipationless shock wave
can occur in this case. Note that initial distributions of this
type were realized in experiment[10] on measurement of
sound velocity in BEC and in the recent experiment[11]. In
[10] the hump’s densityr1 was too small to generate shocks
(see below). In experiment[11] generation of shock oscilla-
tions was apparently observed.

The theory of dissipationless shock waves in media de-
scribed by a one-dimensional(1D) nonlinear Schrödinger
(NLS) equation was developed in[12,13]. Since the GP
equation in some cases can be reduced to the 1D NLS equa-
tion, this theory can be applied to the description of dissipa-
tionless shock waves in BEC.

We consider BEC confined in a disk-shaped trap with the
axial frequencyvz much greater than the transverse onevx
=vy=v'. We suppose that the lower density disk-shaped
BEC is confined by magnetic trap and density distribution
has standard Thomas-Fermi(TF) parabolic form. Let an ad-
ditional potential be applied to BEC in the central part of TF
profile which leads to narrow parabolic hump in the density
distribution. After the central potential is switched off, the
hump starts to expand against wide lower density TF profile
leading to generation of oscillations in the transition region
between high and low density condensates. Let the density of
atoms in the central part of BEC be of order of magnituden0
and satisfy the conditionn0asaz

2!1, where as.0 is the
s-wave scattering length andaz=s" /mvzd1/2 is the amplitude
of quantum oscillations in the axial trap. Then the condensate
wave functionc can be factorized asc=fszdCsx,yd, where
fszd=p−1/4az

−1/2exps−z2/2az
2d is the ground state wave func-

tion of axial motion, andCsx,y,td satisfies the reduced 2D
GP equation

i"Ct = −
"2

2m
sCxx + Cyyd + Vsx,ydC + g2DuCu2C, s1d

where Vsx,yd is the potential of a transverse trap,g2D

=2Î2p"2as/ smazd is the effective nonlinear interaction con-
stant, and C is normalized to the number of atoms,
euCu2dxdy=N. It is known that this mean field approach can
be safely used for description of disk-shaped BEC with only
reservation that the expression for effective constantg2D
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should be changed in the asymptotic limit of extremely low
gas density(see, e.g.,[9], Sec. 17.4). We shall not consider
here this limit and confine ourselves to standard 2D reduc-
tion (1) of the GP equation. Then the initial distribution of
density is determined by the potentialVsx,yd and consists of
wide background with a hump in its center. We assume that
the background width is much greater than hump’s width, so
that at the initial stage of evolution we can consider an ex-
pansion of the central part against the constant background.
In a similar way, at the initial stage of evolution, when the
radius of the central part does not change considerably, we
can neglect the curvature of axially symmetrical distribution
and consider its 1D cross section. It means that we can ne-
glect the dependence ofC on y coordinate and considerC as
a function ofx and t only. As a result, we arrive at 1D NLS
equation with inhomogeneous initial distribution of density.
To simplify the notation, we introduce dimensionless vari-
ables t8=vzt /2, x8=x/az, u=s2Î2pasaz/n0d1/2C. Then the
initial stage of evolution of the wave function profile in thex
axis cross section is governed by the NLS equation,

iut + uxx − 2uuu2u = 0, s2d

where the primes int8 andx8 are omitted for convenience of
the notation.

Evolution of smooth pulses before the wave breaking
point can be described in the hydrodynamic approximation
which can be achieved by substitution

usx,td = Îrsx,tdexpSiEx

vsx8,tddx8D s3d

and separation of the real and imaginary parts. As a result we
obtain the system

1
2rt + srvdx = 0, 1

2vt + vvx + rx = 0, s4d

where we have neglected the so-called “quantum pressure”
term with higher space derivatives what is correct until the
density distribution has smooth enough profile. To get simple
qualitative picture of the wave breaking of BEC density dis-
tribution, let us consider idealized case with a boxlike hump
in the initial distribution,

rsx,0d = Hr0, uxu . a,

r1, uxu ø a.
s5d

Although this distribution has a parameter with dimension of
length—width of the hump—it does not play any role fort
øa/ s2Îr1d, i.e., until two waves propagating inward the
hump with sound velocityc1=2Îr1 meet atx=0. Hence, for
this initial period of evolution the solution forx.0 can only
depend on the self-similar variablej=sx−ad / t, centered at
x=a, and for x,0 on j=sx+ad / t centered atx=−a. Since
the picture is symmetrical, it is enough to consider only a
half of the solution corresponding tox.0. It is easy to find
that the density is given by the formulas

rsx,td =5
r1 for 0 , x , a − 2Îr1 t,

f2Îr1 − sx − ad/2tg2/9

for a − 2Îr1t , x , a + 2sÎr1 − Îr0dt,

f2Îr0 + sx − ad/2tg2/9

for a + 2Îr0 t , x , a + 2sÎr1 − Îr0dt,

r0 for x . a + 2Îr0 t,

s6d

and similar formulas can be written for the velocity field
vsx,td. This solution describes the wave breaking phenom-
enon which takes place ifr1.4r0. This inequality gives an
estimate for difference of densities necessary for formation
of shocks. The density profile shown in Fig. 1 clearly illus-
trates the origin of the multivalued region which should be
replaced by the oscillatory shock wave when the dispersion
effects are taken into account.

For more realistic initial pulses the density profile is a
smooth function without cusp points. In vicinity of the wave
breaking point the solution can be approximated by a cubic
function for one Riemann invariantl+=v /2+Îr of the sys-
tem (4) and by constant value for another onel−=v /2−Îr
(see[12,13]). After Galileo and scaling transformations the
hydrodynamic solution can be written in the form

x − s3l+ + l−dt = − l+
3, l− = const, s7d

and again fort.0 it has a multi-valued region ofl+. It
means that dispersion effects(“quantum pressure”) have to
be taken into account which lead to formation of dissipation-
less shock wave after wave breaking point.

In framework of Whitham theory of modulations[5,14]
one can obtain an approximate solution of the NLS equation
(2) in analytic form where the dissipationless shock wave is
presented as a modulated periodic nonlinear wave solution of
the NLS equation. The density is expressed in terms of Ja-
cobi elliptic function

FIG. 1. Wave breaking of a boxlike initial density distribution
(shown by dashed line) in the hydrodynamic approximation. The
plot corresponds to the solution(6) with a=10, r0=1, r1=10, and
t=1. PointA propagates inward the box with local sound velocity
2Îr1, point C propagates outward along the background density
with local sound velocity 2Îr0, and pointB corresponds to the
intersection of two simple wave solutions with profilesAB andCB.
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rsx,td = uusx,tdu2

= 1
4sl1 − l2 − l3 + l4d2 + sl1 − l2dsl3 − l4d

3 sn2
„
Îsl1 − l3dsl2 − l4dj,m…, s8d

where

j = x − sl1 + l2 + l3 + l4dt, s9d

m=
sl1 − l2dsl3 − l4d
sl1 − l3dsl2 − l4d

, s10d

and parametersli, i =1,2,3,4,change slowly along the dis-
sipationless shock. Their dependence onx and t is deter-
mined implicitly by the solution

x − visldt = wisld, i = 1,2,3,

l4 = l̄ = const s11d

of Whitham equations, where Whitham velocitiesvi and wi
are given by quite complicated expressions in terms of ellip-
tic integrals(see[12,13]):

wi = − 8
35wi

s3d + 4
5l̄wi

s2d − 1
35l̄2visld + 1

35l̄3,

i = 1,2,3, s12d

wi
skd = Wskd + svi − s1d]iW

skd, s13d

Ws1d = V = s1, Ws2d = 3
8s1

2 − 1
2s2,

Ws3d = 5
16s1

3 − 3
4s1s2 + 1

2s3, s14d

visld = S1 −
L

]iL
]iDV, ]i ; ] /] li, i = 1,2,3,4, s15d

where

L =
Ksmd

Îsl1 − l3dsl2 − l4d
s16d

is a wavelength,Ksmd is the complete elliptic integral of the
first kind, ands1, s2, s3 are determined by the expressions

s1 = o
i

li, s2 = o
i, j

lil j, s3 = o
i, j,k

lil jlk. s17d

Equations(12) can be solved with respect toli, i =1,2,3,
giving them as functions ofx and t. Subsequent substitution
of these functionslisx,td, i =1,2,3, into Eq. (8) yields the
modulated periodic wave which represents the dissipation-
less shock wave. The resulting profile of density in dissipa-

FIG. 2. Formation of dissipationless shock wave after wave
breaking point according to Whitham modulation theory applied to
the 1D NLS equation. The dashed line corresponds to the multival-
ued region arising in the hydrodynamic approximation given by Eq.
(7) (it is analogous to the region between the pointsB andC in Fig.
1), and the solid line represents the modulated periodic wave given

by Eqs.(8) and(11). Both profiles are calculated forl̄=−10 at time
t=1.

FIG. 3. (a) Two-dimensional initial distribution of BEC density
with paraboloid hump on a constant background given by Eq.(19)
with a=10, r0=1, andr1=10. (b) Two-dimensional density distri-
bution of BEC after timet=2 of the evolution from the initial
paraboloid density on constant background according to a numeri-
cal solution of the 2D NLS equation(18).
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tionless shock wave is shown in Fig. 2. At one edge it con-
sists of the train of dark solitons, and at another edge
describes small amplitude oscillations propagating with local
sound velocity into unperturbed region described by smooth
solution of hydrodynamical equations. The modulated peri-
odic wave replaces the multivalued region shown by dashed
line which was obtained in hydrodynamic approximation af-
ter the wave breaking point. This multivalued region is
analogous to that in Fig. 1 with account of change of vari-
ables due to Galileo and scaling transformations.

To check the described above picture of formation of dis-
sipationless shock wave and to extend it to real 2D situation,
we have solved numerically the 2D generalization of Eq.(2),

iut + uxx + uyy − 2uuu2u = 0, s18d

with the initial condition

rsr,0d = Hr0 + sr1 − r0ds1 − r2/a2d, ur u ø a,

r0, ur u . a,
s19d

wherer =sx2+y2d1/2. Plots of two-dimensional density distri-
bution are shown in Fig. 3 at initial momentt=0 and after
time evolutiont=2. As we see, the parabolic hump expands
with formation of dissipationless shock wave in the transi-
tion layer between high density region and low density one.
To see more clearly the evolution of the hump, its cross
sectionsy=0d profiles are shown in Fig. 4 at different values
of time t. Slowly propagating dark solitons are clearly seen
as well as small amplitude sound waves propagating into
undisturbed low density region. Dissipationless shock wave
generated at the right side of the profile coincides qualita-
tively with results of analytic theory shown in Fig. 2.

Further evolution of the hump will ultimately lead to its
spreading over large area with small amplitude oscillations,
that is the shock wave does not persist permanently. Rather,
it is a transient phenomenon caused by different values of
characteristic velocities in high density hump and low den-

sity background. Slowly propagating dark solitons are gen-
erated in the transient layer between these two regions in
order to reconcile two different values of velocities of distur-
bance propagation. This mechanism of dark soliton genera-
tion is quite general and can manifest itself in various geom-
etries and initial BEC distributions. Formation of dark
soliton trains in 1D geometry was considered in a recent
paper[15]. Method of shock generation in cigar-shaped BEC
by means of rapid increase of the nonlinear coupling con-
stant using Feshbach resonance was suggested in[16].

In conclusion, we have studied analytically and numeri-
cally the process of formation of dissipationless shock waves
in the density distribution of BEC. We believe that oscilla-
tions in BEC density profile observed in recent experiment
[11] can be explained by this theory.
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FIG. 4. Cross sections of the density profile at different evolu-
tion time according to the numerical solution of the 2D NLS equa-
tion (18) with the initial condition(19).
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