

NMR & Structural biology

IN-CELL NMR

14

•Study proteins in their native cellular environment

• Outermembrane protein in bacterial cell envelop

<text><list-item><list-item><list-item><list-item><list-item><table-container><list-item><list-item><list-item>

TABLE 1.1 Properties of Selected Nuclei ^a			
Nucleus	I	γ (rad . T ⁻¹ . s ⁻¹)	Natural abundance (%
ιH	1/2	2.6752×10^{8}	99.98
² H	1	4.107×10^{7}	0.02
¹³ C	$\frac{1}{2}$	6.728×10^{7}	1.11
14N	ī	1.934×10^{7}	99.64
15N	1	-2.712×10^{7}	0.36
¹⁷ O		-3.628×10^{7}	0.04
¹⁹ F	1	2.5181×10^{8}	100.00
²³ Na	3	7.080×10^{7}	100.00
³¹ P	1/2	1.0841×10^{8}	100.00
113Cd	12	5.934×10^{7}	12.26

"The angular momentum quantum number, *I*, and the gyromagnetic ratio, γ, and natural isotopic abundance for nuclei of particular importance in biological NMR spectroscopy are shown.

Pulse

Radio frequency pulses

• Turn on an amplifier for a certain amount of time & certain amount of power (B₁ field)

only rotation around B₁ is observed

<u>rotating frame</u>: observe with frequency v_{θ}

Chemical shielding

24

Local magnetic field is influenced by electronic environment ==> frequencies of nuclei will differ

<section-header> **Description State Constitution St**

Relaxation

- •Restoring Boltzmann equilibrium
- T₂ relaxation: disappearance of transverse (x,y) magnetization

Key concepts NMR Nuclear magnetic resonance In a magnetic field magnetic nuclei will resonate with a specific frequency FT-NMR Pulse, rotating frame, FID Chemical shift Electronic environment influences local magnetic field -> frequency NMR relaxation T₁ & T₂ J-coupling

2D NOESY

- Uses dipolar interaction (NOE) to transfer magnetization between protons
 - cross-peak intensity $\sim 1/r^6$
 - distances (r) < 5Å

Key concepts multidimensional NMR

- Resolve overlapping signals
- Mixing/magnetization transfer
- NOESY, TOCSY, COSY
- HSQC
- 3D NOESY-HSQC, 3D TOCSY-HSQC
- Triple resonance

<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Link to rotational motions in liquids

• Molecules in solution "tumble" (rotational diffusion combining rotations and collisions with other molecules)

- Can be characterized by a rotational correlation time τc
- Tc is the time needed for the rms deflection of the molecules to be ~ I radian (60°)

-larger (longer) correlation times (slow tumbling)

Key concepts relaxation

- time scales
- fluctuating magnetic fields
- correlation function, spectral density function

- molecular motions
- rotational correlation time (ns)
- fast time scale flexibility (ps-ns)
- slow time scale (µs-ms): conformational exchange