

Interface prediction servers

- PPISP (Zhou & Shan, 2001; Chen & Zhou, 2005) http://pipe.scs.fsu.edu/ppisp.html
- ProMate (Neuvirth et al., 2004) http://bioportal.weizmann.ac.il/promate
- WHISCY (De Vries et al., 2005) http://www.nmr.chem.uu.nl/whiscy
- PINUP (Liang et al., 2006) http://sparks.informatics.iupui.edu/PINUP
- PIER (Kufareva et al., 2006) http://abagyan.scripps.edu/PIER
- SPPIDER (Porollo & Meller, 2007) http://sppider.cchmc.org

Universiteit Utrecht

Consensus interface prediction (CPORT)

haddock.chem.uu.nl/services/CPORT

[Faculty of Science Chemistry]

Systematic search

[Faculty of Science

- Sample rotations (3) and translations (3)
- For each orientation calculate a score
- Can be very time consuming depending on scoring function
- Translational search often carried out in (2D or 3D) Fourier space by convolution of the grids
- Examples:
 - FFT methods: Z-DOCK, GRAMM, FTDOCK...
 - Direct search: Bigger (uses fast boolean operations)

Universiteit Utrech

"Energy-driven" search methods

- Conformational search techniques aiming at minimizing some kind of energy function (e.g. VdW, electrostatic...):
 - Energy minimization
 - Molecular dynamics
 - Brownian dynamics
 - Monte-Carlo methods
 - Genetic algorithms
 - ...

Universiteit Utrecht

• Often combined with some simulated annealing scheme

Faculty of Science

Chemistry]

cience histry]

Universiteit Utrecht

an	Overview	
0.06	Introduction	
	Information sources	
V	General aspects of docking	
	Representation of the system	
	Search methods	
	Dealing with flexibility	
	Information-driven docking with HADDOCK	
and the second	Incorporating biophysical data into docking	
	Multiple choices	
1000	Challenges	
	Conclusions & perspectives	
Ó	Universiteit Utrecht	[Faculty of S

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Faculty of Science

Faculty of Science

			Th	ne H	ADD	ОСК	(PD	B sti	ructi	ure	galle	ery		Ľ	
1	*	No. of Concession, Name	N.CE	-	8	et	-	-	M	100	*	P	*	st.	Co.
DREY of	LARZ y	11.07 af	10.00 gl	1989 10	ran N	1900 4	1210 d	3967 ¥	348Q at	381C ¥	3424 10	3086 af	1293 ef	srm. d	2995. af
·BPS	30	**	*	Pat	(P)	21	14	(B)	10	\$	17.97	730	5	de:	*
taan N	2008 2	2000 4	3010 ¥	2010 8	30% 8	3000 g	Sepa R	3186A @	2948 ¥	2010 2	anan 🧏	n dere	39968 2	2015 4	100H #
-	No.	stig	¥2.	-	-	1	-	1	-	2	1×	-	No.	30	赵武
NAM N	mo ¥	2100 4	ares of	3239 at	3438 ¥	3342 V	1810 g	105. at	1247 af	2002 #	зкли и	THEF N	3838 #	3635 af	3430 #
silles	3.50	No.	\$5	翰	**	84	-	1	and	ALL ALL	豪港	3	404	42	-
SKYE N	Japa 4	1426 ¥	3465 9	5963 ¥	2008 y	2000 %	2007 gl	9007 ¥	3400 ¥	seex of	2664.10	3690 ¥	3674 14	300 %	34.9W W
18 m	5	30	Netter	*	200	-	¥.	10-	14	No.	NE	-	ènt.	11	-
2828 ¥	2000 #	2008 #	2800 ¥	2019 2	2824 #	1007 #	2000 9	1821 af	21.01 ¥	31.00 y	31.87 1	2.00 g	2027 2	area N	2.80 at
9200	-	*	20	-4	13	352	- 	8	N	R.	the state	分配	100	-	4
31.84 af	31.999 af	2018 2	31.00 w	BLAG at	3.67 8	31.62 4	21.84 gi	3.8V #	3876 4	31.88 af	31.94 4	3134 4	2014 af	31.03 af	sure of
貅	0970	The second	EN CO	N.S.	1. Alto	8 8	1	1. S.	-Já	The second	K.	*	1 Alexandre	in .	****
31.TT of	2.89 4	8140 ¥	31.40 %	2LXC 🖌	2M33 🖋	2M1C 🖋	4EQ1 🖌	4BHP 🖋	2LU4 🖋	2LXP g	2LZ6 🖋	2ME6 🖋	2MF8 Ø	2MA9 🖋	2149 🖋
	Universiteit	>11	0 ent	ries -	- Jan	2014	4	Ima	ige col	lage fr	om htt	p://wv	vw.pdb [Fa	o.org aculty of Che	Science mistry]

PDB id	Complex Type	#aa	Shape
		per	/Anisotropy value
		monomer	
3K3K ^b (Nishimura et al., 2009)	Homodimer	211	Prolate / 0.8
2R15^b (Pinotsis et al., 2008)	Homodimer	212	Prolate / 26.8
106S ^u (Schubert et al., 2002)	Dimer	466/105	Prolate / 11.3

Test against experimental SAXS data

	#hits out of 10000 models	#hits ranked by HADDOCK in the top 400 (%)	#hits ranked by HADDOCK _{SAXS} in the top 400 (%)
3K3K	117	74 (63%)	52 (44%)
2R15	2	0 (%)	2 (100%)
106S	25	0 (%)	20 (80%)
	Afte	r flexible refineme	ent
	Afte Single st	r flexible refineme ructure scoring	ent Cluster-based scoring
	Afte Single st (Qua	r flexible refineme ructure scoring ality/Rank)	ent Cluster-based scoring (Quality/Rank)
3K3K	Afte Single st (Qua	r flexible refineme ructure scoring ality/Rank) ***/17	ent Cluster-based scoring (Quality/Rank) ***/1
3K3K 2R15	Afte Single st (Qua */(r flexible refineme ructure scoring ality/Rank) ***/17 6 &**/12	ent Cluster-based scoring (Quality/Rank) ***/1 -

	Benchmark set									
PDB ID	CATH Classification	Complex Type	Docking Type	Symmetry Type	# of residues per Monomer					
1QU9	Mainly Beta	Homotrimer	Bound	C3	128	R.				
1URZ	Alpha Beta	Homotrimer	Unbound	СЗ	400					
10US	Alpha Beta	Homotetramer	Bound	D2	114	MC				
1VIM	Alpha Beta	Homotetramer	Bound	D2	200					
1VPN	Mainly Beta	Homopentame r	Bound	C5	289	A REAL				
3CRO	Mainly Alpha	Homodimer-	Unbound	C2	71	400 MH				
		ds DNA			(Protein)					
					20 (DNA)					

			Benchmark			
				Backb RMSD	one (Å)	
	PDB	CATH	Molecular Classification	Receptor	Ligand	RMSD
	1IRA	Mainly Beta	Cytokine Receptor/ Antagonist	19.5	0.7	
	1H1V	Alpha - Beta	Actin Binding	13.9	1.6	
	1Y64	Alpha - Beta	Structural Protein	10.3	1.1	
	1F6M	Alpha - Beta	Oxidoreductase	7.3	0.92	
	1FAK	Mainly Beta	Blood Clotting	6.0	1.0	
	1ZLI	Alpha - Beta	Hydrolase/Inhibitor	3.8	0.6	
	1E4K	Mainly Beta	Immune System	2.9	1.7	
	1IBR	Alpha - Beta / Mainly Beta	Cell Cycle	2.9	1.1	
	1KKL	Alpha - Beta	Hydrolase/Transferase	2.6	0.5	
	1NPE	Mainly Beta	Structural Protein	1.8	-	
	1DFJ	Alpha - Beta	Endonuclease/Inhibitor	1.5	0.7	
ANNE	Universiteit U	ltrecht		Challenging	[Fa	culty of Science Chemistry]

Faculty of Science

<section-header><section-header><section-header><section-header><image><image><text>

Adapted protocol for ligand docking Ligand parameter and topologies from PRODGR (van Aalten et al.) Rigid body energy minimization Passives residues are "active" to attract the ligand in the binding pocket

- Semi-flexible refinement (it1)
 - No rigid-body simulating annealing (often lead to ejection from the active site
 - Ligand fully flexible
 - 500 steps: 500K to 50K (protein side-chains flexible)
 - 500 steps: 300K to 50K (protein side-chains+backbone flexible)

Universiteit Utrecht

Analysis

- Fit on the reference protein complex
- Look at the ligand position
- Calculate RMSD on heavy atom of the ligand
- RMSD < 2Å considered as an acceptable solution


```
Universiteit Utrecht
```


- Medium size (306 KDa)
- No flexibility
- Hydrophobic
- No charge

[Faculty of Science Chemistry]

Faculty of Science

Example: 1ETS complex

• Improvement in term of:

Quality of the solution: lower Rmsd with ligand-specific settings

Quantity of good solutions: 90% of the solutions have RMSD < 1Å

Old settings: 1.5Å New setting: 0.5Å

Universiteit Utrecht

[Faculty of Science Chemistry]

<section-header><section-header><section-header><section-header><section-header><section-header>

Jniversiteit Utrecht

HADDOCKing with real NMR data
Comparison with reference structure (1ECV)

RMSD on ligand (10 best ranked structures):
0.8 ± 0.1 Å (NMR CSP data)
1.0 ± 0.4 Å (10Å simulated)

0.9 ± 0.2 Å (5Å simulated) [Faculty of Science Chemistry]

Faculty of Science

Summary of the docking result: 10 x 10 structures (dynamics forms)

• For the 41 complexes:

Performance of the HADDOCK server in CAPRI rounds 15-19 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] UU [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] UH [1, 1, 1, 1, 1, 1, 0, 0, 0, 1] UB Two-domain protein - crystal structure incompatible with covalently linked domains!!! [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] BH [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] UH [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] UH [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] UB [0, 0, 3, 0, 0, 0, 0, 0, 0, 0] UB [1, 1, 2, 1, 0, 0, 0, 0, 0, 0] UH [0, 0, 0, 0, 0, 0, 0, 0, 1, 0] HH(H) 1 ***, 1 **, 2 *, 7 stars

[Faculty of Science

HADDOCK's performance in CAPRI

- Overall performance:
 - 3***, 9**, 3* 15 out of 25 (60%)
- Unbound only performance:
 6**, 2* 8 out of 13 (62%)
- As good as it gets... (among the top performing methods)
- "wrong" solutions still often have correctly predicted interfaces, but wrong orientations of the components
- ==> still useful to direct the experimental work

Universiteit Utrecht Van Dijk et al. Proteins 2005; de Vries et al. Proteins 2007,2010 [Faculty of Science Chemistry]

Post-docking interface prediction

	Target	Fraction tru cove	ue interface rage	Fraction overprediciton		
		ligand	receptor	ligand	receptor	
	Т29	0.92	0.88	0.11	0.20	
	Т30	0.84	0.73	0.26	0.39	
	Т32	0.87	0.75	0.25	0.31	
	Т33	0.61	0.42	0.20	0.50	
	Т34	0.61	0.87	0.17	0.10	
	Т37	0.36	0.89	0.66	0.27	
	T40	0.90	0.96	0.05	0.03	
	T41	0.89	0.83	0.04	0.15	
	T42	0.87	0.87	0.14	0.14	
Ur	siversiteit Utrecht				Faculty of Scien Chemistr	

Kastritis, P.L. Moal I.H., Hwang H., Weng, Z., Bates P.A., A.M.J.J. Bonvin, Janin J. Protein Science 2011

Universiteit Utrecht

```
In J.
```


- HADDOCK is highly versatile and can deal with a variety of systems
 - Protein-protein
 - Protein-nucleic acids
 - Protein-small ligand
 - Multi-body assemblies
- Data-driven docking is useful to generate models of biomolecular complexes, even when little information is available
- While models from docking may not be fully accurate, they provide working hypothesis and can still be sufficient to explain and drive the molecular biology behind the system under study

Universiteit Utrecht

[Faculty of Science Chemistry]

