Analytical ultracentrifugation

Olwyn Byron

School of Life Sciences College of Medical, Veterinary and Life Sciences

University of Glasgow, Scotland UK

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5\beta_1$ ligands

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5\beta_1$ ligands

AUC tutorials

- Setting up and running AUC experiments
 - Tutorial paper
 - Lebowitz, J., M.S. Lewis, and P. Schuck, Modern analytical ultracentrifugation in protein science: A tutorial review. Protein Science, 2002. 11(9): p. 2067-2079.
 - AUC user guide from Demeler lab
 - http://www.uslims.uthscsa.edu/AUCuserGuideVolume-1-Hardware.pdf
- Data analysis
 - Using SEDFIT & SEDPHAT
 - http://www.analyticalultracentrifugation.com/default.htm
 - Using Ultrascan
 - http://www.ultrascan.uthscsa.edu/

Questions that can be answered by AUC

- Is sample heterogeneous?
 - If yes, is it in molecular weight, shape, or both?
 - If yes, does it depend on pH, salt, buffer, etc?
- Is sample pure enough for X-ray crystallography, SAXS, SANS or NMR?
- Does sample…
 - ...self-associate?
 - ...aggregate?
- What is molecular weight of sample, or a mixture of samples?
- Does sample bind to a ligand?
- What is stoichiometry of binding?
- What is K_d?
- Is association state/conformation affected by tagging?

More questions that can be answered by AUC

- What is sedimentation & diffusion coefficient?
 - Globular or unfolded/disordered?
 - Is conformation dependent on salt, pH, ligand concentration, deuteration, etc?
- Do mutations affect K_d, conformation, stoichiometry, etc?
- Is sample affected by crowding?

The analytical ultracentrifuge (AUC) was invented by Theodor (The) Svedberg

FIG. 68. Oil-turbine ultracentrifuge laboratory at Upsala

A. Lamp-house; B. Centrifuge; C. Camera; D. Turbine oil inlet; E. Turbine oil outlet F. Bearing oil outlet and oil drain;
G. Main oil container;
H. Oil coolers;
I. Steps to compressor pit.

Nobel Prize in Chemistry 1926 awarded to The Svedberg "for his work on disperse systems"

Svedberg was an interesting man...

- Married 4 times
- 12 children!
- Liked to paint
 - "Atomics"

Svedberg in front of his textile print Atomics. (Gustaf Werner Institute archives)

Svedberg in front of his textile print Atomics. (Gustaf Werner Institute archives)

1960's-80's AUC = core biochemical/biophysical technology

- Advice from the Beckman Model E AUC 1964 manual:
- "The Model E, like a woman, performs best when you care. But you needn't pamper it - just give it the understanding it deserves."

image from Analytical Ultracentrifuge User Guide Volume 1: Hardware, K. L. Planken & V. Schirf, 2008 (http://www.ultrascan.uthscsa.edu/)

The modern AUC a high speed preparative UC with optics

Inside the Beckman Coulter XL-I

sample cell (minus casing)

Relationship between data and sample: absorbance

image from Ralston, 1993 https://www.beckmancoulter.com/wsrportal/bibliography?docname=361847.pdf

Inside the rotor chamber

image from Analytical Ultracentrifuge User Guide Volume 1: Hardware, K. L. Planken & V. Schirf, 2008 (http://www.ultrascan.uthscsa.edu/)

Sample holders sit in holes in the AUC rotor

50k rpm

60k rpm

image from Analytical Ultracentrifuge User Guide Volume 1: Hardware, K. L. Planken & V. Schirf, 2008 (http://www.ultrascan.uthscsa.edu/)

The most difficult part of an AUC experiment: assembling the sample holders

(327022)

Loading a sample

Absorbance optics: the AUC is like a spinning double-beam spectrophotometer

http://www.beckmancoulter.com/resourcecenter/labresources/resource_xla_xli.asp

Interference optics acquire refractive index data rapidly, independent of chromophores

image from Beckman AUC manual http://www.beckmancoulter.com/resourcecenter/labresources/resource_xla_xli.asp

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5\beta_1$ ligands

2 modes of operation - several data types

- Sedimentation velocity (SV)
- Sedimentation equilibrium (SE)
 - In solution
 - Non-destructive
 - Self-cleaning
 - Absolute

Comparison of all optical systems

image from Ralston, 1993 https://www.beckmancoulter.com/wsrportal/bibliography?docname=361847.pdf

Wanna buy an AUC?

- Choice of 2 instruments
 - Beckman Coulter ProteomeLab[™] XL-A/XL-I (≈ €250k)
 - Spin Analytical CFA (available 3rd quarter 2014) (≈ \$200k)
 - http://www.spinanalytical.com/cfa.php

CFA: Centrifugal Fluid Analyser – part of the Open AUC Project

Eur Biophys J (2010) 39:347–359 DOI 10.1007/s00249-009-0438-9

REVIEW

The Open AUC Project

Helmut Cölfen · Thomas M. Laue · Wendel Wohlleben · Kristian Schilling · Engin Karabudak · Bradley W. Langhorst · Emre Brookes · Bruce Dubbs · Dan Zollars · Mattia Rocco · Borries Demeler

The CFA is an entirely new AUC

- Capacity for 3 optical systems
 - Detectors outside vacuum system
- Current
 - Dual Wavelength Fluorescence (DWF); permits:
 - 2 different fluorescently tagged molecules to be monitored simultaneously
 - FRET detection of molecular proximity of cosedimenters
 - Multi-wavelength Absorbance (MWA); permits:
 - separation of components by absorbance spectrum & s

Planned

- Rayleigh interference
- Schlieren refraction
- Small-angle light scatterin
- Multi-angle light scattering
- (SAXS?)

Sedimentation velocity (SV): shape & homogeneity

t=3 h

Sedimentation equilibrium (SE): mass & selfassociation

t=1 h

t=3 h

SV versus SE

- SV: observe movement of sedimentation boundary
- Change in (sometimes complex) boundary over time is due to
 - Sedimentation
 - Diffusion
- SE: rotor spun more slowly so diffusion can balance sedimentation - system reaches thermodynamic equilibrium
- Observe no change in boundary over time
 - Unless sample is degrading or changing in some other way

Sample requirements

• Sample volume

- SV
 - 360 μl (up to 480 μl) in 12 mm pathlength
 - 90 μl (up to 120 μl) in 3 mm pathlength
- SE
 - 20 µl (8-channel centrepiece interference optics only)
 - 80 µl (2- or 6-channel centrepiece)
- Sample concentration
 - Absorbance optics: $A_{\lambda} \approx 0.1-1.0$ in 12 mm pathlength cell
 - λ = 180-800 nm
 - Interference optics: typically 0.05-30 mg/ml
- Sample reference
 - Absorbance optics: can be column eluant or dialysate better
 - Interference optics: must be dialysate
- Typical multiplexing: 3 or 7 sample holders ("cells")/run
 - Up to 28 samples per run

SV: radial movement recorded as function of time

SE: data recorded until no change

Which speed?

Chervenka, C. H. A Manual of Methods for the Analytical Ultracentrifuge. Spinco Division, Beckman Instruments, Palo Alto, 1969

Which speed?

- Rotor speed chosen to optimise shape of equilibrium distribution
- Rule of thumb: at lowest chosen rotor speed, effective molecular weight $(\sigma) = 1$

$$\sigma = \frac{M(1 - \bar{v}\rho)\omega^2}{RT}$$

• At subsequent speeds, speed factor = 1.5 ω^2 for Speed2

Speed Factor =
$$\frac{\omega^2 \text{ for Speed 2}}{\omega^2 \text{ for Speed 1}}$$

 Ensures that in global fitting of data at different speeds, data are different from each other

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5\beta_1$ ligands

3 important equations

$$s = \frac{u}{\omega^2 r} = \frac{M(I - \overline{v}\rho)}{N_A f}$$

Svedberg equation
$$D = \frac{sRI}{M(I - \overline{v}\rho)}$$

Lamm equation
$$\frac{dc}{dt} = \frac{l}{r} \frac{d}{dr} \left[rD \frac{dc}{dr} - s\omega^2 r^2 c \right]$$

Almost all AUC data analysis software is freely available

The RASMB website

- "Reversible Associations in Structural and Molecular Biology"
- http://www.rasmb.bbri.org/
- Access to freely available software
- Subscription to AUC-related discussion group
- Schuck lab (SEDFIT, SEDPHAT)
 - http://www.analyticalultracentrifugation.com/default.htm
- Demeler lab (UltraScan III (including SOMO))
 - http://www.ultrascan.uthscsa.edu/
Many methods & programs for SV data analysis

- Too many for comprehensive review here
- Model independent:
 - dc/dt (Stafford, SedAnal)
 - Eliminates time invariant noise. Resultant curves can be fitted with Gaussians to reveal species content and sedimentation coefficients.
 - c(s) (Schuck, Sedfit)
 - Good for "first look" at data to get an idea of number of species. Not a proper fit to data.
 - van Holde-Weischet (Demeler, UltraScan III)
 - Diffusion corrected s distribution. Good for detection of aggregates and identification of underlying model.
- Model dependent:
 - Non-interacting discrete species (Schuck, Sedfit)
 - Up to 4 separate species can be fitted.
 - Self-association (Stafford, SedAnal; Demeler, UltraScan III)
 - Determination of K_d , k_{on} , k_{off} , stoichiometry

s is influenced by solvent density & viscosity and sample density

SEDNTERP : Calculation of ρ , η and partial specific volume online

Sednterp.unh.edu	☆ マ C 】 🚷 マ Sednterp	۹ 🖡 🖪 ۲
ile Help		
Sample Solvent Experiment Results		×
Buffer Data Select from list to retrieve from database New Solvent	Calculate Buffer Density Density 1.00790 Posity Corrected for Temperature & Isotopes of Water 1.00790	0
Density Direct Entry Standard Compute	Calculate Buffer Viscosity Viscosity 0.01002 Viscosity Corrected for Temperature 0.01002	2
Viscosity	Components Buffer Components Concentration	Units
Direct Entry Standard Compute	Select + Add => Sodium chloride 0.2	molar 🗘 👔
рН	Tris(hydroxymethyl)aminomethane 0.05	molar 🛟 💼
	Heavy Isotopes of water H2O 100 % Volume D2O 0 % Volume H2O18 % Volume D2O18 % Volume	
		Cancel Ok

http://sednterp.unh.edu/

SV: species can resolve into separate boundaries

SEDFIT c(s) analysis: how many species + s of species

1: Load SV data

2: Specify parameters

SEDIMENTATION ANALYSIS -> Z:\Documents\Honours Projects\2010\PhtD\389\111710\160545\00150.IP2	
ata Copy Display Model Parameters Run Fit Generate Statistics Notes Options Plot	Help
Continuous Sedimentation Coefficient Distribution c(s)	20
resolution 200 s min 0.00000 s max 7 ✓ frictional ratic 1.20000 s grid from file log spaced s grid I fit RI Noise Fit Time Independent Noise Meriscu: 5.8003 Botom 7.2195 Cancel OK	- - - - - - - - - - - - - - -
7	

3: Set meniscus, cell base and analysis limits

4: Run

5: Subtract time and radial invariant noise

6: Fit (with solutions to the Lamm equation)

7: Integrate to obtain estimate of concentration of species and weight-average values

Sum of Lamm equations $0 \le s \le 20$ S discretised by 200

Sum of Lamm equations $0 \le s \le 15$ S discretised by 200

Sum of Lamm equations $0 \le s \le 12$ S discretised by 200

Truncating upper fit limit does not increase the resolution at lower s

Self association: SE data are the sum of exponentials

$$\begin{array}{l} \mathsf{A}_{r} = \exp[\ln\mathsf{A}_{0} + \mathsf{H}.\mathsf{M}(r^{2} - r_{0}^{2})] & \leftarrow \mathsf{monomer} \\ \\ + \exp[\mathsf{n}_{2}\ln\mathsf{A}_{0} + \ln\mathsf{K}\mathsf{a}_{2} + \mathsf{n}_{2}.\mathsf{H}.\mathsf{M}(r^{2} - r_{0}^{2})] & \leftarrow 1 - \mathsf{n}_{2} \\ \\ + \exp[\mathsf{n}_{3}\ln\mathsf{A}_{0} + \ln\mathsf{K}\mathsf{a}_{3} + \mathsf{n}_{3}.\mathsf{H}.\mathsf{M}(r^{2} - r_{0}^{2})] & \leftarrow 1 - \mathsf{n}_{3} \\ \\ + \exp[\mathsf{n}_{4}\ln\mathsf{A}_{0} + \ln\mathsf{K}\mathsf{a}_{4} + \mathsf{n}_{4}.\mathsf{H}.\mathsf{M}(r^{2} - r_{0}^{2})] + \mathsf{E} & \leftarrow 1 - \mathsf{n}_{4} \end{array}$$

Self-association: "deconvolution" into individual components

Self-association: best model revealed by residuals

0.040 0.080 0.020 0.000 0.000 0.020 <u>se 0.040</u> 000.0 dna esidna 0.040 CBC COC -0.040 -0.080 1.20 1.20 1.00 1.00 absorbance absorbance 0.80 0.80 0.60 0.60 0.40 0.40 ant 0.20 5.95 0.20 5.95 6.05 6.15 6.05 6.15 radius (cm) radius (cm)

2-4

1-4

LET'S HAVE A BREAK!

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5\beta_1$ ligands

Hetero-association example: PDC E3BP-DD:E3 sub-complex

- E3 forms a homo-dimer
- E3 binds to E3BP-DD

Native PAGE: stoichiometry is 2:1

Mischa Smolle Smolle et al., JBC 281 19771-80 (2006)

ITC: stoichiometry is 2:1

- Microcal VP-ITC
- T = 25°C
- Proteins dialysed o/n vs ref buffer
- 10 μl aliquots E3 (40.7 μM) titrated into 6.2 μM E3BP-DD
- Data fitted with non-linear regression model (Microcal software)
- Kd = 36 nM
- ∆H = -12.1 kcal/mol
- T∆S = -1.7 kcal/mol
- N = 0.5 molecules E3 bind/molecule E3BP-DD
 - equivalent to 2 E3BP-DD/E3

Mischa Smolle, Alan Cooper Smolle et al., JBC 281 19771-80 (2006)

SV titration

- T = 4°C
 - Must ensure that T is constant
 - Takes *hours* to thermally equilibrate
- Rotor speed 45k rpm
- Interference optics used
 - Scan interval 1 minute
- [E3] = 4.9 µM
- Sample volume 380 µl
- Pathlength 12 mm

SV titration: stoichiometry is 2:1

- Expt 1: SV of E3 alone; SV of E3BP-DD alone
 - Determine their s
- Expt 2: SV of E3BP-DD+E3
 - At what ratio does E3BP-DD peak vanish?
 - This reveals stoichiometry: 2:1
 - Note 2 complex peaks
 - Different conformations
 - s ≈ 6 S peak less compact
 - s ≈ 8 S peak more compact

Mischa Smolle Smolle et al., JBC 281 19771-80 (2006)

SE titration

- From amino acid sequence:
 - E3BP-DD M = 19.5 kDa
 - E3 M = 105 kDa
- Sample volume = 30 µl
- Path-length 3 mm
- SE performed at 3 rotor speeds
 - 8.5, 12, 16k rpm
 - Appropriate for different complexes
- Absorbance data (280 nm)
- Radial step size 0.001 cm
- Program WINMATCH used to demonstrate attainment of equilibrium
 - Comparison of scans 3 h apart

SE titration: stoichiometry is 2:1

- Whole-cell weight-average M (M_{w,app}) determined
 - e.g. using species analysis in SEDPHAT with 1 species only
 - No model assumed
- When E3BP-DD is in excess
 - M_{w,app} < M_{complex} until complex is formed
- When E3 is in excess
 - M_{w,app} < M_{complex} because excess E3 lowers M_{w,app}
- ??? Why M_{w,app} ≠ M_{complex} at 2:1???

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5\beta_1$ ligands

Detergent solubilised proteins: density matching SE

• In SE bouyant molecular weight is determined:

 $M_{\rm p}(1-\phi'\rho) = M_{\rm p}[(1-\bar{\nu}_{\rm p}\rho)+\delta_{\rm Det}(1-\bar{\nu}_{\rm Det}\rho)]$

- In many AUC expts we want to observe self-association
- Density matching is a good method for self-associating membrane proteins

Burgess, N. K., Stanley, A. M. & Fleming, K. G. (2008). Determination of membrane protein molecular weights and association equilibrium constants using sedimentation equilibrium and sedimentation velocity. In *Methods in Cell Biology* (J. Correia & H. W Detrich, III, eds.), **84**, 181-211. Academic Press

Density matching SE: experimental conditions

- Experimental conditions adjusted such that:
 - solvent ρ = effective ρ of bound detergent

$$\rho = 1/v_{\text{Det}}$$

$$M_{\text{p}}(1 - \phi'\rho) = M_{\text{p}}[(1 - \bar{v}_{\text{p}}\rho) + \delta_{\text{Det}}(1 - \bar{v}_{\text{Det}}\rho)])$$

1 /-

- So detergent becomes effectively invisible to centrifugal field
- SE data can be analysed with standard methods
BUT....this method works only in certain conditions

- The solvent density must be adjusted with D_2O or $D_2^{18}O$
 - Alternatives would be e.g. sucrose or other co-solvent
 - Affect chemical potential
 - Lead to preferential binding and/or exclusion of water or additional cosolvent at protein surface
- But use of D₂O or D₂¹⁸O limits detergents that can be used
 - $\rho^{\overline{v}}D_2O = 1.1 \text{ g/ml}$
 - of the $\frac{1}{2}$ detergent must be between that of water and D_2O
 - i.e. 0.9 ≤ ≤ 1.0 ml/g
 - Eliminates:

- V
- dodecylmaltoside ($\rho = 1.21 \text{ g/ml}$, = 0.83 ml/g)
- β -octylglucoside (ρ = 1.15 g/ml, = 0.87 ml/g)
- Suitable: \overline{v}
 - C8E5 (= 0.993 ml/g)
 - C14SB (density matched by 13% D₂O in 20 mM Tris-HCl, 200 mM KCl)
 - Dodecylphosphocholine (DPC, density matched by 52.5% D_2O in 50

Burgess, Stanley Ral Fleining (2003). 1hOle mold i Nau Biology (J. Correia & H. W. Detrich, III, eds.), 84, 181-211. Academic

Determination of density-matching point for C14SB

- Determine % of D₂O required to density match C14SB micelles in background of other buffer components
 - 30 mM C14SB in 20 mM Tris-HCl, 200 mM KCl made in 0, 10, 20, 30% D₂O
 - Reference solvent the same minus detergent
 - SE observed with interference optics
 - Collect "buffer blanks" for subtraction to reduce noise
 - Then replace buffer with micelle solution in sample channel
 - Rotor speed 50k rpm
 - T = 25°C

SE of systems solublised by C14SB: OMPLA

- Outer membrane phospholipase A (OMPLA)
 - Gram negative bacteria
- Beckman XL-A, T = 25°C
- 20 mM Tris-HCI, 200 mM KCI
- 13% D₂O
 - $[OMPLA] = 0.3, 0.6, 0.9 A_{280}$ (12 mm pathlength)
 - Rotor speed = 16.3, 20, 24.5k rpm
 - [C14SB] = 5 mM
 - Increased [detergent] → dilution of protein that is solublised in detergent phase thus promoting dissociation
 - Monomer mass determined

OMPLA studied at 3 concs, 3 rotor speeds for each of 4 conditions

- 1. OMPLA
- 2. OMPLA + 20 mM CaCl₂
- 3. OMPLA + covalently bound fatty acyl chain substrate analogue
- OMPLA + covalently bound fatty acyl chain substrate analogue + 20 mM CaCl₂

SE results: 1. OMPLA

- SE data first globally fitted with equation for single ideal species
- Good fits
 - $\sqrt{\sigma^2} \approx \text{instrument noise} (\approx 0.005)$
 - Residuals randomly distributed about 0
- M for all 9 data sets within 5% of monomer M
- Conclusion: OMPLA monomeric in absence of cofactors

SE results: 4. OMPLA + covalently bound fatty acyl chain substrate analogue + 20 mM CaCl₂

- 2 fatty acyl chain analogues tested:
 - decylsulfonylfluoride (DSF)
 - perfluorinated octylsulfonylfluoride (pOSF) (all H replaced by F)
- For both analogues, single species fits returned M > M_{monomer}
- Therefore tried
 - Monomer-dimer
 - Monomer-trimer
 - Monomer-tetramer
- Fitting parameter is K_d

OMPLA-DSF reversibly dimerises

SE of systems solublised by C14SB: OmpF

- *E. coli* OmpF
- Beckman XL-A, T = 25°C
- 20 mM Tris-HCI, 100 or 200 mM KCI
- 13% D₂O
- OmpF normally trimer
- Collected 36 data sets:
 - [OmpF] = 0.3, 0.6, 0.9 A₂₃₀ (12 mm pathlength)
 - [C14SB] = 5, 12 & 30 mM
 - Rotor speed = 9, 11, 13.5, 16.3k rpm

OmpF

Self-association probed in 2 ways:

- Working at low [protein]
- Increasing [detergent]

• At each [detergent], SE data globally fitted

For 4 rotor speeds & 3 [protein]

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5\beta_1$ ligands

s = deviation from sphericity + hydrodynamic hydration

Sedimentation coefficient is a constraint for SAS modelling

- For one sphere $f_0 = 6\pi\eta R_0$
- For an assembly of N spheres an approximate solution is

• where
$$\zeta_{i} = 6\pi\eta_{0}\sigma_{i}$$

$$f_{t} = \frac{\sum_{i=1}^{N}\zeta_{i}}{1 + (6\pi\eta_{0}\sum_{i=1}^{N}\zeta_{i})^{-1}\sum_{i\neq}^{N}\sum_{j}^{N}\zeta_{i}\zeta_{j}r_{ij}^{-1}}$$

Several freely available programs for HBM

- A more exact expression for f_t together with expressions for other hydrodynamic and related parameters are encoded in HBM software:
- José García de la Torre *et al.* (Universidad Murcia, Spain)
 - http://leonardo.inf.um.es/macromol/programs/programs.htm
 - HYDRO
 - Computes hydrodynamic & other parameters for any bead model
 - HYDROPRO
 - Computes hydrodynamic & other parameters for models constructed from pdb files
 - And many other programs....

Mattia Rocco, Emre Brookes

- http://somo.uthscsa.edu/
 - Generates HBMs from pdb files, computes hydrodynamic & other parameters with realistic hydration
 Wiewed in Byron (2008) Methods in Cell Biology 84 327-373

SOMO - construction of "intelligently" hydrated bead models from atomic coordinates

- Water of hydration included in each bead
- Bead overlaps removed heirarchically
 - Reducing radii + translating bead centres outwards
- Beads overlapping by > preset threshold are fused ("popped")
- Buried beads excluded from hydrodynamic calculations
 - Reduces cpu time

Rai, Nöllmann, Spotorno, Tassara, Byron & Rocco, Structure (2005) 13, 723-734

SOMO is a subprogram of UltraScan III

Mattia Rocco/ Borries Demeler/ Emre Brooks Rai et al. (2005) Structure 13723-34; Brookes et al. (2010) Eur. Biophys. J; Brookes et al., (2010) Macromol. Biosci. http://somo.uthscsa.edu/

Parameters computed by SOMO (1)

000	Hydrodynamic Parameters to be Saved							
	Parameters av	ailable		Parameters selected				
Main	Additional	Solve	ASA		Model name Sedimentation coefficien			
Total beads Used beads Molecular m Partial speci Translationa Stokes radiu Frictional rat Relaxation T Intrinsic viso	in model in model ass [Da] fic volume [cm^3/g] I diffusion coefficient is [nm] tio 'ime, tau(h) [ns] cosity [cm^3/g]	D [cm/sec^2]			Sedimentation coefficien Radius of gyration [nm] (
	Help							
	Пер		Close					

Parameters computed by SOMO (2)

000	Hydrodynamic Parameters to be Saved							
	Parameters ava	ilable]	Parameters selected				
Main	Additional	Solve	ASA		Model name Sedimentation coefficien			
Total surface Total volume Number of un Used beads of Used beads of Used beads of Used bead m Conversion F Translational Rotational fri Rotational dif Rotational dif Rotational fri Rotational fri Rotational St Centre of res Centre of ma Centre of diff Centre of vision Uncorrected Uncorrected int Corrected int Relaxation tim Relaxation tim	area of beads in the mode of beads in the mode nused beads volume [nm^3] surface area [nm^2] ass [Da] Factor frictional coefficient [1// ctional coefficient [1// ctional coefficient [X ffusion coefficient [X ffusion coefficient [X okes' radius [X, Y, Z] fistance [X, Y, Z] [nm] istance [X, Y, Z] [nm] istance [X, Y, Z] [nm] cosity [X, Y, Z] [nm] intrinsic viscosity [cm Einstein's radius [nm] mes, tau(1) [ns] mes, tau(2) [ns] mes, tau(3) [ns] mes, tau(4) [ns] mes, tau(4) [ns] mes, tau(h) [ns]	model [nm^2] il [nm^3] cm^2/s] s] , Y, Z] [g*cm^; , Y, Z] [1/s] [nm]] n^3/g]] a/g]	2/s]		Radius of gyration [nm]			
Help				Close				

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5\beta_1$ ligands

Example: Oligomerisation of synthetic polyvalent integrin $\alpha_5\beta_1$ ligands

- $\alpha_5\beta_1$ ligands used to immobilise cells on surfaces via
 - 9th type III FN domain synergy site (PHSRN)
 - 10th type III FN domain RGD site
- $\alpha_5\beta_1$ ligand oligomers facilitate increased binding
- Oligomerisation accomplished via 5 heptad repeats based on GCN4 leucine zipper
 - I/L placed variously @ a and d positions to promote di-, tri- & tetramerisation
- Thiol-linked immobilisation to surface achieved via C-terminal Cys
- Question: do the ligands oligomerise as designed?

Construction of hydrodynamic bead models

MRGSHHHHHHGMASGLDSPTGIDFSDITANSFTVHWIAPRATITGYRIRHHPEHFSGRPREDRVPHSRNSIT LTNLTPGTEYVVSIVALNGREESPPLIGQQSTVSDVPRDLEVVAATPTSLLISWDAPAVTVRYYRITYGETG GNSPVQEFTVPGSKSTATISGLKPGVDYTITVYAVTGRGDSPASSKPISINYRTSKLEPKSSDTPPGSPRSP EPKSSDTPPGSPRSGRIKQLEDKIEELLSKIYHLENEIARLKKLIGELEDKIENLGC

- From vector (including His-tag) too short for e.g. SWISSMODEL
- FN III 9-10 domain pair homology model (SWISSMODEL)
- Synthesised "missing beads"
- Coiled-coil (42 a.a.) SWISSMODELs generated for underlined segment

Oligomer models generated

Kreiner et al., (2009) Biophysical Chemistry 142 34-39

Oligomer models generated

Oligomer models generated

AUC SV no DTT: c(s) analysis reveals complex composition

Kreiner et al., (2009) Biophysical Chemistry 142 34-39

AUC SV + DTT: c(s) analysis reveals simplified composition

Kreiner et al., (2009) Biophysical Chemistry 142 34-39

Example: Oligomerisation of synthetic polyvalent integrin $\alpha_5\beta_1$ ligands

- $\alpha_5\beta_1$ ligands used to immobilise cells on surfaces via
 - 9th type III FN domain synergy site (PHSRN)
 - 10th type III FN domain RGD site
- $\alpha_5\beta_1$ ligand oligomers facilitate increased binding
- Oligomerisation accomplished via 5 heptad repeats based on GCN4 leucine zipper
 - I/L placed variously @ a and d positions to promote di-, tri- & tetramerisation
- Thiol-linked immobilisation to surface achieved via C-terminal Cys
- Question: do the ligands oligomerise as designed?
 - They do not!
 - AUC allows model-free observation of unexpected species
 - HMB allows interpretation of these species

Outline

- AUC background
- How AUC experiments are performed
- Data analysis
- Example: simple model-independent investigation of a hetero-association
- Detergent solubilised systems
- Hydrodynamic bead modelling (HBM)
- Example: oligomerisation of synthetic polyvalent integrin $\alpha_5\beta_1$ ligands