Time resolved scattering studies

Clement Blanchet

Time resolved studies?

- Studies of systems that changes over time
- Collect data at different time point of the

reaction

1/25/2014

Time resolved experiment

• Perturb a system

· Monitor the return to equilibrium

1/25/2014

Time resolved scattering studies - C.

Blanchet

Time resolved studies: ingredients

Perturbation

- Modification of physical conditions (T, P)
- Modification of chemical conditions (fast mixing, caged compound)
- Modification of the system (photolysis,...)

Probe

- Anything that can collect information on your system
- In our case: SAXS (SANS has generally too long collection time for time resolved studies).

1/25/2014

Monitor the reaction

- Fast reaction: short perturbation
- Fast reaction: short collection time

- Many photons needed to collect a proper SAXS data → High flux
- Fast detector

1/25/2014

• Multilayer monochromator Substrate Substrate Short collection time: High flux UNDULATOR Cherent Interference Undulator Double crystal monochromator Multilayer monochromator Blanchet Undulator Double crystal monochromator Multilayer monochromator

Fast detector

- Photon counting detector: Pilatus (300Hz), Eiger (3kHz)
- CCD(up to 5kHz)
- Gas detector (1MHz)

 Overcome detector limitation: use short beam pulse (using shutter, chopper,...)

1/25/2014

Dead time

- Time between the beginning of the reaction and the first data point
- Depends on:
 - How fast the reaction is triggered
 - How fast the first point can be collected
- Short dead time needed to study fast kinetic

1/25/2014

Examples

- "Slow Kinetics"
 - Fibril formation
- Sub-Second kinetics
 - Stopped-flow
- Millisecond kinetics
 - Continuous flow
 - Caged compound
- Ultrafast kinetics

1/25/2014

Time resolved scattering studies - C.
Blanchet

Slow kinetics – Fibril formation

Vestergaard, B., Groenning, M., Roessle, M., Kastrup, J.S., de Weert, M.V., Flink, J.M., Frokjaer, S., Gajhede, M. & Svergun, D.I. (2007) PLoS Biol. 5, e134

1/25/2014

Amyloid fibrils

- Insoluble protein aggregates
- Implied in different diseases (Alzheimer, Parkinson, Type II diabetes,...)
- Common structural features (cross beta)

Nucleation growth

Sub-second kinetics • Stopped-flow (dead time: 2-10 ms) **Trays** **Mixer 2** **Mixer 2** **Syringe 1 Syringe 2 Syringe 3 Syringe 4** **Time resolved scattering studies - C. Blanchet**

Time resolved scattering studies - C.

Blanchet

1/25/2014

Continuous flow

- Continuous flow → high sample consumption
 - Microfluidic continuous flow system

- Space <-> time
 - low flux OK
 - time resolution <-> flow rate and size of the beam
- Dead time (SAXS) ≈150 microseconds

1/25/2014

Time resolved scattering studies - C.

Blanchet

Example continuous flow

Conformational landscape of cytochrome c folding studied by microsecond-resolved small-angle x-ray scattering. Akiyama *et al.* PNAS 2002

1/25/2014

Caged compound release by flash photolysis

• DM-nitrophen

1/25/2014

Model With the state of the st

Ultra-fast time resolved

1/25/2014

Ultra short collection time

- Beamline ID09B, ESRF, Grenoble
- Using the pulsed structure of the synchrotron

About 5000000 bunch/sec

1/25/2014

Time resolved scattering studies - C.
Blanchet

Isolate one bunch

• Isolate one bunch (ms shutter + fast chopper)

Single bunch experiment

- High flux needed
- Repetition of the measurements

1/25/2014

Time resolved scattering studies - C.
Blanchet

Pump and probe experiment Trigger with Probe with Laser pulse X-ray Bunch length ≈ 100 ps → Resolution: up to 100 ps Time resolved scattering studies - C. Blanchet

TR WAXS

Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering. Cammarata et al. Nature 2008.

1/25/2014

Time resolved scattering studies - C.
Blanchet

T and R states of hemoglobin

Looking at the unbinding of oxygen by hemoglobin

1/25/2014

Conclusion

- SAS can be used to study kinetic
- For fast reaction:
 - Special setup required to triggered the reaction
 - High flux is needed: third generation source (impossible with lab source and neutrons)

1/25/2014