Mixtures, Assemblies, Flexible Systems

Maxim PetoukhovEMBL, Hamburg Outstation

Complex vs Mixture

• Equimolar ratio A and B

Correlated

 $A_{a+b}(s) = A_a(s) + A_b(s)$

 $I_0 \sim M_a + M_b$

 $I_{a+b}(s) = c_a I_a(s) + c_b I_b(s)$

 $I_0 \sim (M_a^2 + M_b^2) / (M_a + M_b)$ $\leq MAX(M_a, M_b)$

Scattering from mixtures

 $I(s) = \sum v_k I_k(s)$ k

For mixtures, solution scattering permits to determine the number of components and, given their scattering intensities $I_k(s)$, also the volume fractions

Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. & Svergun, D. I. (2003) *J. Appl. Cryst.* **36**, 1277

R.H.H. van den Heuvel, D.I. Svergun, M.V. Petoukhov, A. Coda, B. Curti, S. Ravasio, M.A. Vanoni & A. Mattevi (2003). *J. Mol. Biol.* **330**, 113-128

SVD Analysis

ŠVD: Number of independent components

Mixture of monomers and dimers

Molecular Assembly of Lumazine Synthase

LS catalyzes the formation of 6,7-dimethyl-8-ribityllumazine in the penultimate step of riboflavin biosynthesis. Depending on the buffer it forms pentamers, dimers of pentamers and icosahedral capsids

Zhang, X., Konarev, P.V., Petoukhov, M.V., Svergun, D.I., Xing, L., Cheng, R.H., Haase, I., Fischer, M., Bacher, A., Ladenstein, R. & Meining, W. (2006) *J Mol Biol.* **362**, 753-770

Quaternary structure of the human Cdt1-Geminin complex regulates DNA replication licensing

Timely inhibition of Cdt1 by Gemin[§] A⁻¹ essential⁰ to this DNA replic^{0,3} ion lice^{0,4} ing A⁻¹

- The mechanism of DNA licensing inhibition by Geminin, is analyzed by combining MX, SAXS and functional studies.
- The Cdt1:Geminin complex can exist in two distinct forms, a "permissive" heterotrimer and an "inhibitory" heterohexamer

V. De Marco, P. J. Gillespie, A. Lib, N. Karantzelis, E. Christodouloua, R. Klompmaker, S. van Gerwen, A. Fish, M. V. Petoukhov, M. S. Iliou, Z. Lygerou, R. H. Medema, J. J. Blow, D. I. Svergun, S. Taraviras & A. Perrakis (2009) PNAS USA, **106**, 19807

Word of Caution: Glutamate Synthase Story

GItS is a complex iron-sulfur flavoprotein that catalyse the reductive transfer of L-glutamine (L-Gln) amide group to the C_2 carbon of 2-oxoglutarate (2-OG), yielding two molecules of L-glutamate (L-Glu) S JEXP ERROR log l(s) 2002 3 MW~900 kDa => tetramer $\alpha\beta$ protomer: 160+50=210 kDa 2 0.1 0 0 5 0.15 tscorc.dat S β homology model

α Xtal dimer

Collaboration: M.A. Vanoni (Milano Univ.)

Glutamate synthase: EM model

19 19 19	10 10-24	0. 404	600 600	
	10 10 10	0.8 6.8		
		4. Ø		
	800 800			

Comparison of the "Old" and "New" data

EM hexamer Old SAXS tetramer

Glutamate synthase: salt / substrate dependence

OLIGOMER with EM model

GItS => 90%(αβ)₆ +10% αβ

GltS+NaCl => 100% $\alpha\beta$

GltS+2OG => 90%($\alpha\beta$)₆ +10% $\alpha\beta$ GltS+L-MetS => 90%($\alpha\beta$)₆ +10% $\alpha\beta$ GltS+L-MetS+2OG => 90%($\alpha\beta$)₆ +10% $\alpha\beta$

GltS+NADP=> 70%($\alpha\beta$)₆ +20%($\alpha\beta$)₂+10% αβ GltS+NADP+L-MetS+2OG=> 70%($\alpha\beta$)₆ +20%($\alpha\beta$)₂+10% αβ

In case of a mixture, SAS permits to study

- Oligomeric equilibrium
- Conformation changes
- Complex stoichiometry

Flexible systems

Kratky plot permits to detect disorder

Biomolecules are Dynamic Entities

Local Protein Fluctuations: Backbone and side-chains

Protein vibrations, loop motions and breathing to facilitate interactions and catalysis

Concerted domain motions: Linkers as Hinges

Specific and limited domain jumps between relative positions often linked with catalysis in on/off mechanisms

Highly flexible regions or domains

An astronomical number of conformations are available. Flexible multi-domain proteins (MD) and Intrinsically Disordered Proteins (IDPs) Linked with signaling and regulation

Flexible Proteins: Why to Care?

Many biological functions such as transcription, regulation, cell cycle control, require extensive flexibility

Is more common in higher organisms that have to perform more and more controlled functions. Disorder is correlated with complexity

High selectivity, moderate affinity, and promiscuity are properties often linked to flexibility

In these systems partially structured conformations or transient long range interactions can be crucial for biological activity. Structural studies are important

Indications (not Proofs!) of Flexibility

Smooth Scattering profiles and featureless Kratky Plots

► Large R_g and D_{max}

Absence of correlation peaks in the p(r) function

Low correlation densities in *ab initio* reconstructions

Isolated domains in rigid body modelling

Prediction of disorder using bioinformatics

Detection of Flexibility

PolyUbiquitin Molecules 2,3,4 and 5 Ubiquitin (72 AA) domains

2,3,4 and 5 Ubiquitin (72 AA) domains connected by 20 AA linker (RanCH)

Flexible Multidomain Proteins present less features than rigid counterparts

Bernadó Eur. Biophys. J. 2009, 39, 769

Flexibility as a mix of different conformations

$$I(s) = 4\pi \int_{0}^{D} p(r) \frac{\sin sr}{sr} dr$$

For monodisperse systems the scattering is proportional to that of a single particle averaged over all orientations

$$I(s) = \sum_{k} v_k I_k(s)$$

 v_k = volume fraction $I_k(s)$ = scattering intensity from the *k*-th component

Ensemble Optimization Method

Instead: find an ensemble with the same characteristics as the sample

Ensemble optimization method for structural characterization of flexible proteins

- When?
 - SAS data cannot be described by a single conformation
 - To assess the flexibility
- How?
 - Assume that a representative ensemble exists that fits the data
 - Large number of random structures is created
 - From the full ensemble of structures select the ones that together fit the scattering curve

Ensemble Optimization Method

Genetic Algorithm (optimized ensemble size)

Ensemble Optimization Method

actual structures

curve

Optimized ensemble

0.10

0.08

0.06

0.04

0.02

0.00

.. the beauty of the Pentagon

EOM 2.0 can handle multimeric assemblies

(full length protein measured in two buffers with low and high ionic strength respectively)

500 N

Length (residues)

Several experimental and theoretical studies establish $v \approx 0.588$ as an indication of the 'random coil' in chemically denatured (Urea or GuHCI) proteins.

Kohn et al. PNAS, 2004, 101, 12491

Assessing conformation variability: Iysozyme unfolding

Multiple Curve Fitting with EOM: Reaching «Higher Resolution»

Application to Tau Protein

Fetal Tau

Mylonas et al. Biochemistry 2008, 47, 10345

Other ensemble approaches

Maximum Occurrence Approach

 The MO of a conformation can be calculated as the maximum weight that the conformation can have and be in agreement with the experimental data

– NMR data

- » Residual dipolar couplings
- » Pseudo contact shifts

» SAXS Paramagnetic Me

Bertini, Giachetti, Luchinat, Parigi, Petoukhov, Pierattelli, Ravera, Svergun, JACS, 2010

Maximum Occurrence Approach

Probe of Calmodulin Conformations by Combining SAXS with NMR

Blue: 5% Red: 40%

E. coli Flavorubredoxin

Modular enzyme endowed with nitric oxide and/or oxygen reductase activity

E. coli Flavorubredoxin: *ab initio* modelling

E. coli Flavorubredoxin: Xtal vs SAXS

E. coli Flavorubredoxin: various constraints

E. coli Flavorubredoxin: EOM

Flexible Systems Summary

- SAS van address protein flexibility, conformational changes and assembly/dissociation processes
- Ensemble Methods are appropriate tools to study (potentially) flexible molecules
- Unique structural information can be obtained based on distributions of descriptors whereas structures collected are simply a TOOL to describe the shape distributions

GASBOR_MX: quaternary structure of weak (symmetric) oligomers

SASREF_MX: structural analysis of transient complexes

Ab initio Approach for Oligomeric Mixtures

Rigid Body Modelling from Mixtures

Proof of Principle: BSA Sample

Proof of Principle: BSA Sample

SASREFMX reconstruction

Closest interfaces from BSA crystal structure 3V03 shown as backbones

GASBORMX reconstruction

Partially Dissociated αD11 Fab–NGF Complex

Computational docking model

Covaceuszach, S., Cassetta, A., Konarev, P.V., Gonfloni, S., Rudolph, R., Svergun, D.I., Lamba, D. and Cattaneo, A. (2008), Journal of Molecular Biology 381, 881-896.

Study of ERR-IR3 Complex

Study of ERR-IR3 Complex

Ig I, relative

Study of ERR-IR3 Complex

Cross validation: Comparison with *ab initio* bead model of the full length ERRα (including N-termini) in complex with IR3, which is built against the monodisperse SAXS profile from HPLC peak corresponding to the 6:3 assembly

3D Modelling from Equilibrium Mixtures

- Transient complexes and weak oligomers might be modelled (with caution!) against SAXS data
- Volume fractions of the entire assembly and of dissociation products are additional minimization parameters
- *Ab initio* analysis of weak symmetric homo-oligomers is done by dummy residues approach
- Quaternary structure of dissociating multisubunit assemblies (including nucleoproteins) is reconstructed by rigid body modelling
- Multiple scattering profiles (e.g. from concentration series) can be fitted simultaneously

