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We present a study of orbital angular momentum transfer from pump to down-converted beams in a type-II
optical parametric oscillator. Cavity and anisotropy effects are investigated and demonstrated to play a central
role in the transverse mode dynamics. While the idler beam can oscillate in a Laguerre-Gauss mode, the crystal
birefringence induces an astigmatic effect in the signal beam that prevents the resonance of such a mode.
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I. INTRODUCTION

Early experiments have shown that circularly polarized
light carries angular momentum[1]. In a quantum descrip-
tion of light, this angular momentum is associated with the
spin of the photon. More recently significant attention has
been given to the study of the orbital angular momentum of
light, associated with phase singularities in the wave front. In
a paraxial description of wave propagation, it is found that
Laguerre-Gaussian beams carry orbital angular momentum.
Such beams can be experimentally produced either by astig-
matic mode conversion with cylindrical lenses[2,3], or by
holographic techniques. In the latter, an optical beam is dif-
fracted through amplitude[4–6] or phase masks[7] in order
to produce the optical vortex. On one hand, amplitude masks
can be easily produced with simple photographic techniques,
but their use is quite limited when high power is required.
On the other hand, the use of phase plates for high power
operation requires delicate manufacturing techniques. Astig-
matic mode converters can use simple optics(cylindrical
lenses) to convert Hermite-Gauss into Laguerre-Gauss
modes. They are also fairly suitable for high-power purposes,
but require a high-order Hermite-Gauss mode to start with.

Many recent experiments have been performed to demon-
strate the orbital angular momentum(OAM) conservation in
nonlinear optical processes. It was observed in second har-
monic generation[8,9], and a test of OAM conservation in
parametric down conversion(PDC) was made by Arltet al.
[10], in the spontaneous regime. In the latter, no conservation
was obtained in the macroscopic regime since the authors
were detecting images of incoherent fields and hence were
not sensitive to conservation properties of individual photon
pairs. Clear evidence of OAM conservation in spontaneous
PDC was obtained by Mairet al. [11], who observed en-
tanglement between OAM variables of twin photons. In an-
other experiment, Caetanoet al. [12] introduced a stimulat-
ing beam, and parametric amplification was shown to be
conditioned to OAM conservation.

So far, little attention has been given to OAM conserva-
tion in intracavity nonlinear coupling. Many studies have

been done with transverse multimode optical parametric os-
cillators (OPO’s), showing interesting possibilities in pattern
formation and quantum images for cavities with degenerate
transverse modes, like planar[13,14] and spherical cavities
[15,16]. Moreover, experiments have shown pattern forma-
tion in confocal[17] and concentric[18] cavities, and oscil-
lation in modes with higher order than the fundamental are
common in many different experiments[19,20].

Apart from theoretical studies on generation of phase sin-
gularities with nonlinear optical effects[21,22], only a few
experimental results have been published on this subject, and
to our knowledge, there is no result showing the necessary
conditions for intracavity OAM transfer from the pump to
the down-converted beams. In the present work, we study the
OAM transfer in a nondegenerate, type-II optical parametric
oscillator (OPO), operating above threshold. We show the
conditions that must be satisfied for the OAM transfer, al-
lowing one of the down-converted beams to oscillate with
the same phase singularity of the pump beam. As we shall
see, the astigmatism caused by the crystal birefringence
plays a central role in the selection of the beam oscillating in
the Laguerre-Gauss mode. However, under certain condi-
tions, the OAM may be lost, and no phase singularity is
observed in the down converted beams.

II. EXPERIMENTAL SETUP AND RESULTS

The experimental setup is shown in Fig. 1. The OPO is
made by two spherical mirrors M1 and M2, with equal cur-
vaturesRm=13mm. Inside the cavity, we have a KTP crystal
(by Cristal Laser) 10 mm long, cut for noncritical phase
matching in 532–1064 nm down conversion at room tem-
perature. In this case, the crystallographic axessx,y,zd of the
crystal are oriented as follows. Thez axis of the crystal is
vertically oriented while the propagation direction lies on the
horizontal planesxyd. The x axis forms an anglef=23.5°
with respect to the propagation direction.

The mirrors have high reflectance for the infrared(R
=99.8% at 1064 nm), and a small transmittance at the pump
wavelength(R=92% at 532 nm). Crystal losses in the infra-
red come mainly from surface reflection, reduced by antire-
flective coatingsR=0.1%d, since crystal absorption at this
wavelength is smalls0.05%d. For the pump, we have reflec-
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tion lossessR=0.5%d and crystal absorption, increased by
gray-tracking effects[23].

The cavity length is controlled by a piezoelectric actuator
on the mirror, and the cavity is kept nearly confocal, in order
to help the alignment and reduce the consequences of the
walk off.

The OPO is pumped by the second harmonic of a
Nd:YAG laser (Lightwave 142). This laser generates a
TEM00 Gaussian beam, that is converted to a nearly Hermite-
Gauss TEM01 beam[24]. With a telescope formed by two
cylindrical lenses, we implemented a mode converter that
produces a Laguerre-Gauss beam[2], with a good cylindrical
symmetry for the intensity and a phase singularity in the
center. This phase singularity was evidenced by the self-
interference pattern obtained in a Michelson interferometer.
In Fig. 2 we show the transverse profile and interference
pattern of the beam used to pump the OPO. The resulting
pump power is 60 mW. The beam is horizontally polarized,
and mode matched to the cavity with the help of coated
lenses.

Although the mirrors were high reflecting at 1064 nm, the
output power coming out from the cavity through M2 can be
detected by a PIN photodiode. The green light coming from
the cavity is filtered by a dichroic mirror(DM), and detected
by an amplified Si photodetectorsDGd. The infrared light is
detected by a PIN InGaAs photodiodeDIR (ETX-300, from
Epitaxx), that samples part of the output beam that is re-
flected by a beam splitter(BS).

In the output, signal and idler beams are separated by a
polarizing cube(PBS). Adopting the usual convention in
type-II OPO’s, the idler beam polarization is horizontal, and
the signal beam has a vertical polarization, aligned to the
crystal z axis. Each down converted beam is sent into a
Michelson interferometer made by a nonpolarizing 50/50
beam splitter(BS) and two flat mirrors, in order to produce
interference fringes that can reveal the existence of a phase
singularity. The two outputs are recombined in another po-
larizing cube(PBS) and sent onto a charge-coupled device
(CCD) camera, that is used to register either the interference
pattern or the intensity profile of the beam.

The output power of the pump and infrared beams is mea-
sured as the cavity length is scanned. The corresponding
resonance peaks are shown in Fig. 3. A wide peak is obtained
for the pump, over which narrow dips appear, owing to the
pump depletion in different oscillation regimes. The reso-
nance peaks for the infrared are also shown in Fig. 3. They
coincide with the depletion dips in the pump resonance. Ex-
panding the curve, we can observe that the depletion dips
have a parabolic shape, in good agreement with the depletion
expected for a triply resonant OPO[25]. From the finesse of
the resonance peak for the pump, we measure 29% of inter-
nal losses in the cavity. For signal and idler modes, the fitting
of the parabolic depletion gives a value of 1% for the infra-
red losses. The threshold power for parametric oscillation is
around 20 mW.

The OPO could be kept oscillating, with a continuous
output for as long as 10 min. In this situation, we registered
the output image of signal and idler beams, as well as their
self-interference patterns. These images are shown in Fig. 4.
They are labeled in correspondence to the oscillation peaks
shown in Fig. 3.

In images 1 and 4, the output intensity in the idler is the
one of a Laguerre-Gauss beam. The corresponding interfer-
ence patterns show the topological defects in the center of
the Laguerre-Gauss beam characteristic of phase singulari-
ties. In this situation, the idler beam carries the orbital angu-
lar momentum of the down converted pump photons. In im-
age 2, the shape of the idler beam is intermediary between a
first order Laguerre-Gauss and a diagonal first-order
Hermite-Gauss modes. A vortex can still be observed
through the interference fringes. In both cases, the signal
beam remains in the fundamental Gaussian mode. Following
the Poincaré-sphere representation proposed in Ref.[26], we
can look at the idler mode shown in image 2 as an orbital
equivalent of an elliptical polarization.

An interesting effect appears in image 3. In this situation,
the signal beam oscillates in the transverse mode with higher
order, but with no angular momentum. The output is a pure
Hermite-Gauss TEM01 mode, vertically oriented, while the
idler remains in the fundamental Gaussian mode. Therefore
the orbital angular momentum is not conserved in the para-
metric down conversion process, and the crystal is expected
to suffer a twisting torque. This effect is analogous to the
mechanical torque applied to a quarter wave plate used for
light polarization conversion[1], or to a pair of cylindrical

FIG. 1. Setup for the study of the phase singularities in the
output of the type-II triply resonant OPO. The mode converter in-
troduced in the pump beam is not shown.

FIG. 2. (a) Transverse profile of the pump;(b) interference pat-
tern showing the topological defects characteristic of phase
singularities.
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lenses used for transverse-mode conversion[2].
The reason for this asymmetry in the OAM conservation

of the pump can be explained when the propagation of
paraxial beams in anisotropic media is investigated(see the
Appendix). The resulting astigmatic cavity formed by the
spherical mirrors and the anisotropic crystal will select the
modes that will be able to oscillate.

III. ASTIGMATIC CAVITY

As can be seen in the Appendix, when the effects of the
crystal birefringence are taken into account, the paraxial

wave equation for the propagating beams can be expressed
with the help of rescaled spatial coordinates. All scaling pa-
rameters appearing in Eqs.(A13) and(A17) can be absorbed
by a suitable definition of an effective wave numberkef f for
each transverse direction and for each polarization. This
brings Eqs.(A13) and (A17) to the general form

]y
2Usx,yd = 2ikef f ]xUsx,yd. s1d

The normalized solution of Eq.(1) is [27]

Usx,yd = S kef f xR

p22nn!2sx2 + xR
2dD

1/4

HnSyÎ kef f xR

x2 + xR
2D

3expF− i
kef f y2

2sx + ixRd
− iSn +

1

2
DarctanS x

xR
DG ,

s2d

wherexR is the Rayleigh length, andHnsxd is the Hermite
polynomial of ordernù0. The term arctanx/xR is the well
known Gouy phase shift. This term avoids multiple reso-
nances of high-order Hermite-Gaussian(HG) modes in a
high finesse cavity for the signal and idler modes of the
OPO. The beam propagation is characterized by the beam
waist w0=Î2xR/kef f and the wave-front curvatureRsxd=xs1
+xR

2 /x2d . The change in the effective wave number is
equivalent(in terms of beam diffraction) to the propagation
in a shorter length of free space. Since the effective wave
number depends both on polarization and transverse direc-
tion, we can consider a different propagation length in each
case.

Let us now consider the refractive index of the KTP crys-
tal at 1064 nm snx=1.7404,ny=1.7479,nz=1.8296d and
532 nm snx=1.7797,ny=1.7897,nz=1.8877d, according to
the manufacturer, Cristal Laser S.A. We have, for the ex-
traordinary wave, a refractive indexns1064 nmd=1.7467 and
ns532 nmd=1.7881. From the distanceL0=17.4 mm be-
tween the mirrors in our near-confocal cavity, and the crystal

FIG. 3. Resonance peak for
the pump beam, showing the os-
cillation of the OPO. The infrared
peaks are labeled in order to iden-
tify the different images shown in
Fig. 4.

FIG. 4. (a) Intensity patterns for signal(right) and idler (left)
beams labeled in correspondence with the infrared peaks shown in
Fig. 3. (b) Self-interference patterns showing the presence or not of
phase singularities.
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length ,=10.0 mm, we can calculate the effective lengthL
of the cavity for each transverse mode, and for each polar-
ization, in the infrared case. Using the relation

L = L0 − ,
kef f − k0

kef f
, s3d

we obtain, from the values ofkef f given by Eqs.(A13) and
(A17)

Ly8
o = 12.87 mm, Lz

o = 13.40 mm, Ly9
e = 13.17 mm,

Lz
e = 13.12 mm, s4d

where the superscripto sed refers to the ordinary(extraordi-
nary) wave. The effect of the walk off for the extraordinary
wave has been taken into account, but the correction was
,10−4, and could be neglected. The values of the Rayleigh
length inside the cavityfxR

2 =L2s2Rm−Ld /4g for each trans-
verse direction of the beam, and for each polarization, differ
by less than 1%, and cannot be noticed in the free-
propagating beam,

xRy8
o = 6.500 mm, xRz

o = 6.497 mm,

xRy9
e = 6.499 mm, xRz

e = 6.500 mm. s5d

On the other hand, the total Gouy phase shift accumulated in
a round trip inside the cavity,F=4 arctansÎL /Î2Rm−Ld,
will be

Fy8
o = 3.122 rad, Fz

o = 3.204 rad,

Fy9
e = 3.167 rad, Fz

e = 3.161 rad. s6d

The phase added in a round trip depends on the order of
the Hermite-Gauss TEMmn mode resonating inside the cav-
ity. The total Gouy phase for this mode is

F = sm+ 1/2dFz + sn + 1/2dFy. s7d

From the calculated values of the Gouy phase shift, we see
that there will be a small phase difference between the
TEM01 and the TEM10 modes. This difference will result in a
splitting of the resonance position. At 1064 nm, this separa-
tion is of 82 mrad for the ordinary wave, and 6 mrad for the
extraordinary one.

In order to study this splitting, we pumped the OPO with
a Laguerre-Gaussian(LG) mode obtained with an astigmatic
mode converter[2]. The LG mode is the superposition of
two HG modes orthogonally oriented, that is, a TEM01 and a
TEM10 mode. Once the OPO cavity is scanned, a single reso-
nance peak is expected if the cavity is degenerate for the two
TEM modes. Otherwise, two resonance peaks are expected,
one corresponding to each TEM mode. In Fig. 5, we show
the resonance peak of a high finesse cavity for a 532-nm LG
pump. The polarization of the pump laser was rotated in
order to provide both, the ordinary and extraordinary waves.
For the vertical polarization(ordinary wave), a double reso-
nance is observed as expected. This splitting shows a round
trip phase difference of 88 mrad, in reasonable good agree-

ment with the predicted 93 mrad for 532 nm. On the other
hand, for horizontal polarization(extraordinary wave), the
LG resonance presents a single peak. In this case, the split-
ting is expected to be around 8 mrad, well below the resolu-
tion of the cavity used for this measurement.

From this analysis we conclude that the OPO can support
the oscillation of an LG mode for the extraordinary wave,
since its HG components have a degenerate(or quasidegen-
erate) resonance frequency. On the other hand, an LG mode
in the ordinary wave cannot operate because its HG compo-
nents will not have the same resonance frequency. This ex-
plains the results shown in Fig. 4, that is, the orbital angular
momentum(OAM) is transferred from the pump laser(ex-
traordinary wave) to the idler mode(extraordinary wave) but
not to the signal mode(ordinary wave). Notice that, under
our experimental conditions, only one of the down converted
modes oscillates in a high-order transverse mode, while the
other one oscillates in the fundamental transverse mode. So,
the OAM exchange between pump, signal and idler modes is
governed by the cavity dynamics under the crystal aniso-
tropy, involving polarization and transverse profile aspects.

IV. THEORETICAL MODEL

Transverse multimode operation of OPO’s has already
been theoretically discussed in Ref.[28]. The pump beam
can excite many different cavity modes for signal and idler,
but in general it is the one with the lowest threshold that
survives. Therefore modes with the best recovering integral
should oscillate. To extend this description to our experi-
ment, we must take into account the walk off and the astig-
matism due to the crystal anisotropy. As we have seen, the
astigmatism will introduce a phase shift between the two
Hermite-Gauss components of the Laguerre-Gauss beam. We
can choose to treat the problem either in the Laguerre-Gauss
basis or in the Hermite-Gauss one. For the Laguerre-Gauss
basis, the astigmatism couples the right-handed beam to the
left-handed one. In the Hermite-Gauss basis, this coupling
implies in a phase difference between the two first-order
modes. Here we chose to work in the Hermite-Gauss basis,
but the change of basis is straightforward.

In order to study the dynamics of the relevant transverse
modes, we shall consider the normalized mode functions
uj ksx8 ,y8 ,zd, where j =p,s, i for pump, signal, and idler re-
spectively, andk=0,h,v for the Hermite-Gauss TEM00,
TEM10, and TEM01, respectively. The overlap integrals,

Lklm =E E E upksx8,y8,zdusl
* sx8,y8,zd

3uim
* sx8,y8,zddx8 dy8 dz, s8d

play an important role in the dynamics since they determine
the transverse-mode coupling. The mode functions
ujksx8 ,y8 ,zd are given by Eqs.(A13), (A17), and(2), where
astigmatism and walk-off effects are taken into account. The
walk off is slightly different for pumps4.1 mradd and idler
s3.2 mradd, and the significant astigmatism occurs in thez
direction of the signal mode. The integrals are calculated in
the whole crystal volume.
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With the overlap integrals, we can obtain the dynamic
equations for the transverse-mode amplitudes. From all pos-
sible combinations of oscillating modes, the cavity parity
will restrict the number of transverse modes for a given lon-
gitudinal mode. If there were no anisotropic effects, with a
first order Laguerre-Gaussian pump mode, which is odd, sig-
nal and idler must have opposite parities in order to give a
nonzero overlap integral. Therefore, for isotropic propaga-
tion, if signal oscillates in a first-order mode, idler must os-
cillate in the fundamental one, and vice versa. In principle,
this parity selection breaks down for an anisotropic medium
specially due to walk off. However, when the overlap inte-
grals are calculated, we can see that the integrals for odd
combinations of modes, likesv ,0 ,0d or sv ,v ,vd for example,
are indeed much smaller than those obtained with an even
combination likesv ,v ,0d. This allows us to neglect many of
the mode couplings and restrict the number of dynamic equa-
tions. Two kinds of operation regimes are observed: either

the signal beam oscillates in the fundamental TEM00 mode,
while the idler lies in the TEM01 and TEM10 subspace(peaks
1, 2, and 4 in Fig. 3), or the idler beam oscillates in the
TEM00 mode (peak 3 in Fig. 3). Let us describe these re-
gimes
separately.

A. Signal beam operating in the TEM00 mode

In this case, the set of dynamic equations for pump, sig-
nal, and idler transverse-mode amplitudes is

ȧpv = − fgp + isDp + spdgapv − ixLv0v
* as0aiv + Ein/Î2,

ȧph = − fgp + isDp − spdgaph − ixLh0h
* as0aih − i Ein/Î2,

ȧs0 = − sg + iDsdas0 + ixLv0vapvaiv
* + ixLh0haphaih

* ,

ȧiv = − fg + isDi + sidgaiv + ixLv0vapvas0
* ,

FIG. 5. Cavity resonance peak for a pump LG
beam with(a) horizontal(extraordinary) polariza-
tion and (b) vertical (ordinary) polarization. In
the second case the resonance peak splits in two,
clearly showing the symmetry breaking between
the two HG components of the LG beam.
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ȧih = − fg + isDi − sidgaih + ixLh0haphas0
* , s9d

where the subindexesp, s, and i refer to pump, signal, and
idler respectively, and 0,v, and h refer to fundamental
sTEM00d, vertical sTEM01d, and horizontalsTEM10d trans-
verse modes. Pump losses are described bygp while a com-
mon decay rateg represents the losses for signal and idler.
The respective cavity detunings for pump, signal, and idler
are Dp, Ds, and Di. The astigmatic symmetry breaking is
accounted for through the frequency splitting parameterssp
for pump andsi for idler. They are calculated with the help
of Eq. (7). The pump beam amplitude transmitted through
the input mirror is represented by the source termEin. Since
it is prepared in a Laguerre-Gauss mode, the source terms
appearing in the dynamic equations for the amplitudesapv
and aph are p /2 out of phase. Finally,x is the nonlinear
coupling constant.

The dynamic equations, as well as their steady-state solu-
tions, are considerably simplified if we express time in units
of the cavity round-trip timet and define the following nor-
malized variables:

bjk = xL000tajk, xin = xL000t
2Ein,

g̃ j = g jt, D̃ j = D jt, s̃ j = D jt,

hklm =
Lklm

L000
. s10d

As before,j =p,s, i for pump, signal, and idler, respectively,
and each of the subindexesk, l, and m may assume the
values 0,h, or v. Cavity losses are around 29% at 532 nm
and 1% at 1064 nm that giveg̃p=145 mrad andg̃=5 mrad.
In the absence of astigmatism and walk off the relevant nor-
malized overlap integrals arehvv0=hhh0=hv0v=hh0h=0.71
approximately. When the walk-off effect is considered, the
overlap integrals are averaged over the crystal volume.
Moreover, the astigmatism is included through the appropri-
ate correction of the mode functions. Taking into account the
experimental values for the walk-off and astigmatism param-
eters we findhvv0=0.70, hhh0=0.60 andhv0v<hh0h<0.71.
So, a significant change is obtained only forhhh0.

It is instructive to consider the steady-state solution of
Eqs. (9) in the simplified conditionDs=Di =sp=si =0 and
hv0v=hh0h=h which correspond to neglecting walk off and
astigmatism. In this case the orbital angular momentum is
perfectly transferred to the idler beam which will also oscil-
late in a Laguerre-Gauss mode with the same topological
charge of the pump beam. Therefore the steady-state solu-
tions are

Ip− = I i− = 0, Ip+ = g̃2/h2,

Is0 = I i+ = I0 =
g̃

h2FÎh2 xin
2

g̃2 − D̃p
2 − g̃pG , s11d

where we defined the normalized intensitiesI jk= ubjku2. The
Laguerre-Gauss amplitudesbj± are given in terms of the
Hermite-Gauss amplitudes as

bj± =
bjv ± ibjh

Î2
. s12d

The threshold value ofxin for parametric oscillation is ob-
tained by settingI0=0 so that

xL
2 =

g̃2

h2sg̃p
2 + D̃p

2d. s13d

As we shall see, a different threshold condition is obtained
for the other operation regime, in which the idler beam op-
erates in the TEM00 mode.

The analytical solution for the steady state including all
parameters is cumbersome but Eqs.(11) give us a good es-
timate for the orders of magnitude. In fact, as we discussed
in Sec. IV, the expected value for the pump and idler splitting
parameters are indeed very small,s̃p=4 mrad and s̃i
=3 mrad[the splitting parameter is half the astigmatic phase
shift calculated from Eq.(7)]. However, this small splitting
may be responsible for partial transfer of the orbital angular
momentum from the pump to the idler mode. In order to
illustrate this, we numerically integrated the dynamic equa-
tions (9) with a fourth-order Runge-Kutta method until the
steady state was reached. In Fig. 6 this time evolution is
shown together with the valueI0 given by Eq.(11). In the
inset, we show the expected image for signal(S) and idler(I)
obtained with the numerical steady-state results. A good
qualitative agreement is obtained with the experimental re-
sults corresponding to peaks 1, 2, and 4 of Fig. 3.

B. Idler beam operating in the TEM00 mode

In this case the dynamic equations are

ȧpv = − fgp + isDp + spdgapv − ixLvv0
* asvai0 + Ein/Î2,

ȧph = − fgp + isDp − spdgaph − ixLhh0
* ashai0 − i Ein/Î2,

ȧsv = − fg + isDs + ssdgasv + ixLvv0apvai0
* ,

ȧsh= − fg + isDs − ssdgash+ ixLhh0aphai0
* ,

ȧi0 = − sg + iDidai0 + ixLvv0apvasv
* + ixLhh0aphash

* . s14d

The transverse-mode splitting now appears in the dynamic
equation for the signal beam and is represented by the pa-
rameterss. However, the splitting parameter is expected to
be of the order of 41 mrad. Since cavity losses in the infrared
are of the order of 1%, the corresponding normalized decay
rate isg̃=5 mrad, so thatss@g̃. Under such conditions it is
impossible for the OPO to support the simultaneous opera-
tion of theh andv modes necessary to compose a Laguerre-
Gauss mode. Therefore the orbital angular momentum can-
not be transferred to the down-converted beams. The cavity
tuning will select the signal Hermite-Gauss mode whose
resonance frequency is closer to the idler resonance. For ex-
ample, forDs=−ss the cavity frequency falls far away from
the h signal resonance while thev mode gets on resonance.
In this caseash<0 and the steady-state solution of Eqs.(14)
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can be analytically obtained. Notice that the normalized
overlap integralhhh0 will not play any role in this case. We
therefore seth=hvv0 and use the same normalizations
adopted in Eqs.(10) to find

Ish= 0, Iph =
xin

2 /2

g̃p
2 + D̃p

2
, Ipv =

g̃2

h2 ,

I i0 = Isv = I08 =
g̃

h2FÎh2 xin
2

2g̃2 − D̃p
2 − g̃pG . s15d

The h component of the pump beam does not couple to the
down-converted modes so that its steady-state solution cor-

responds just to an empty cavity. On the other hand, thev
component of the signal beam, as well as the fundamental
idler mode, presents a steady-state intensity lower than the
one found in Eqs.(11) for the same pump levelxin. This
corresponds to the situation found in peak 3 of Fig. 3, which
is clearly lower than the other infrared peaks. Again, the
oscillation threshold is readily obtained by takingI08=0:

xL
2 =

2g̃2

h2 sg̃p
2 + D̃p

2d. s16d

It is twice the threshold value for the case where the orbital
angular momentum is transferred for the idler beam, what is

FIG. 6. Time evolution of the
down-converted beam intensities
(in units of the cavity round-trip
time) obtained from numerical in-
tegration of the dynamic equations
(9). The inset shows the corre-
sponding expected images for sig-
nal (s) and idler(i). The parameter
values used areDp=0.071gp, Ds

=0, Di =1 mrad,gp=145 mrad,g
=5 mrad, sp=4 mrad, si

=3 mrad xin=3 xL, and hv0v
=hh0h=0.71. The horizontal solid
line shows the analytical valueI0.

FIG. 7. Time evolution of the
down-converted beam intensities
(in units of the cavity round-trip
time) obtained from numerical in-
tegration of the dynamic equations
(14). The inset shows the corre-
sponding expected images for sig-
nal (s) and idler(i). The parameter
values used areDp=0.28gp, Ds=
−41 mrad, Di =0, gp=145 mrad,
g=5 mrad, sp=4 mrad, ss

=41 mrad, xin=1.5xL, and hvv0

=0.70. The horizontal solid line
shows the analytical valueI08.
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also coherent with the lower height of peak 3 in Fig. 3.
The numerical evolution of Eqs.(14) using a fourth order

Runge-Kutta method was performed without the simplifying
assumptions. These results are presented in Fig. 7, where the
inset shows the expected images for signal and idler. The
walk-off and astigmatic effects were fully considered and a
good agreement with the experimental result was obtained.

V. CONCLUSION

We have shown that the transfer of orbital angular mo-
mentum in intracavity parametric down conversion is
strongly subjected to cavity and anisotropy effects. Orbital
angular momentum conservation can be observed only if
pump, signal, and idler are in a set of modes where the
Hermite-Gauss(HG) components of the Laguerre-Gauss
(LG) modes are degenerate inside the cavity. While that can
be easily achieved for the idler beam, the signal beam cannot
fulfill this condition unless cavity losses are large. If the idler
beam oscillates in the fundamental mode, one can still obtain
signal oscillation in a higher transverse mode. However,
since the HG components are not degenerate, the threshold
power increases, and the orbital angular momentum is not
transferred to the down-converted beams.

We also developed a theoretical model, which presents
good agreement with the experimental results, and which
should be useful for future investigations of the transverse-
mode dynamics in the quantum domain. Interesting perspec-
tives can be envisaged if the OPO operation is subject to an
injected signal. Recent studies on degenerate[29] and non-
degenerate[30] parametric processes with injected signal
have considered interesting issues such as the preparation of
quantum correlated states(Einstein-Podolsky-Rosen states),
as well as the study of critical behaviors of the OPO
operation[31].
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APPENDIX: PARAXIAL WAVES
IN A BIREFRINGENT CRYSTAL

In a type-II down-conversion, we use the crystal birefrin-
gence to achieve the desired phase matching condition
[32,33]. It was shown by many authors that the paraxial
equation, from which we can derive the propagation modes
of a beam in free space or isotropic medium, will change
when we work with an anisotropic medium[34,35]. Here we
will extend the study of Fleck and Feit[36] of paraxial
propagation in uniaxial crystals to the biaxial case, adapting
their description to the case of a crystal inside a cavity. Our
aim is to reduce the wave equations to the paraxial wave
equations that define the Hermite-Gauss modes coupled to
the resonances of a linear cavity.

Let us define the crystallographic axes assx,y,zd. The
KTP crystal used in our experiment is a quasiuniaxial one
with nx,nyÞnz, where nxsy,zd is the refraction index for
xsy,zd polarized light. Since the displacement vectorD sat-
isfies= ·D=0, we can write the wave equation for the elec-
tric field E, derived from Maxwell’s equations, as

=2E − =S= ·E −
= ·D

a
D + k0

2 « · E= 0, sA1d

wherek0=v /c is the wave number in vacuum corresponding
to frequencyv, anda is a constant to be conveniently cho-
sen. This constant will significantly simplify the paraxial
propagation analysis in the birefringent medium. The consti-
tutive relationD=« ·E depends on the dielectric tensor«,
that is diagonal when we use the crystallographic coordinates

« = 3nx
2 0 0

0 ny
2 0

0 0 nz
24 . sA2d

The wave equations for the electric field components can
be derived from Eq.(A1) by using the constitutive relation
and choosinga=ny

2 to obtain

nx
2

ny
2]x

2Ex + ]y
2Ex + ]z

2Ex − S1 −
nz

2

ny
2D]x]zEz + k0

2nx
2Ex = 0,

]x
2Ey + ]y

2Ey + ]z
2Ey − S1 −

nx
2

ny
2D]y]xEx − S1 −

nz
2

ny
2D]y]zEz

+ k0
2ny

2Ey = 0,

FIG. 8. Coordinate system used to describe the paraxial propa-
gation through the anisotropic crystal. The walk-off anglef8 is
indicated as the angle between the Poynting vectorS and the propa-
gation axisx8.
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]x
2Ez + ]y

2Ez +
nz

2

ny
2]z

2Ez − S1 −
nx

2

ny
2D]z]xEx + k0

2nz
2Ez = 0.

sA3d

Notice that for a uniaxial crystalsnx=nyd we recover the
equations obtained in Ref.[36]. Let us now consider propa-
gation along an axisx8 lying on thexy plane with an anglef
with respect to the crystallographic axisx, as shown in Fig.
8. This definition off has the advantage to match the angle
and axis definitions usually given by crystal manufacturers.
For our KTP crystal, cut for type-II phase matching of 532
and 1064 nm, we havef=23.5°. A rotated reference frame
sx8 ,y8 ,zd can be used to describe the propagation inside the
crystal. The coordinate transformation between the two
frames is

x8 = x cosf + y sin f,

y8 = − x sin f + y cosf,

z8 = z. sA4d

1. Plane-wave analysis

Two orthogonally polarized plane-wave solutions propa-
gating alongx8 can be found for Eqs.(A3), one with Ex
=Ey=0 andEzÞ0 (z polarized) and another polarized in the
xy planesEz=0d. For thez polarized solution, only the last of
Eqs.(A3) remain and its solution is

Ez = E0ze
inzk0x8. sA5d

The plane-wave solution polarized on thexy plane can be
found by makingEz=0 in the first two of Eqs.(A3). This
solution is of the kind

E = E0e
iskxx+kyyd, sA6d

whereE0=E0xx̂+E0yŷ. From substitution of Eq.(A6) in the
first one of Eqs.(A3), we find

kx
2

ny
2 +

ky
2

nx
2 = k0

2, sA7d

which is the projection of the well-known index ellipsoid on
the xy plane. By makingkx=n k0 cosf and ky=n k0 sin f,
we get

cos2f

ny
2 +

sin2f

nx
2 =

1

n2 , sA8d

wheren is the index of refraction for propagation alongx8.
On the other hand, if we substitute Eq.(A6) in the constitu-
tive relationD=« ·E and in= ·D=0 we find that

nx
2kxEx + ny

2kyEy = 0. sA9d

SincenxÞny, this means thatE and k are not orthogonal.
Therefore the Poynting vectorS, that is orthogonal toE, is
not parallel tok . Let us callf8 the angle betweenS andk.
A straightforward geometric analysis allows one to obtain a
simple relation betweenf andf8:

tanf8 =
sin f cosfsny

2 − nx
2d

nx
2 cos2 f + ny

2 sin2 f
. sA10d

This angle is represented in Fig. 8. It is related to the well-
known walk-off effect, which appears as a consequence of
the crystal anisotropy. However, as we shall see shortly, thez
polarized field will also have an anisotropic effect when the
propagation of a transversely finite beam is considered. This
effect appears as an astigmatic deformation of the beam dur-
ing the propagation along the crystal.

2. Paraxial propagation

On the other hand, to obtain a direct solution of Eq.(A1)
for a paraxial beam propagation is not so straightforward and
some careful approximations have to be made to uncouple
the differential equations for each polarization. For thez
component, the wave equation has the form

S]x
2 + ]y

2 +
nz

2

a
]z

2 + k0
2nzDEz − Sa − nx

2

a
D]x]zEx

− Sa − ny
2

a
D]y]zEy = 0. sA11d

To reduce this equation to the paraxial wave equation forz
polarization, we can begin by eliminating the terms with
cross derivatives. One way to do this is to approximate the
biaxial crystal by a uniaxial one for thez polarization. This is
valid since unx−nyu! unz−nyu. If we chosea=n2, we have
usa−ni

2d /au>10−2 for i =hx,yj, giving a very small contribu-
tion. In the limit nx=ny=n these terms will vanish, and we
have the uniaxial crystal studied in Ref.[36].

A paraxial solutionEz=uzsx8 ,y8 ,zde−inzk0x8 of Eq. (A11)
can be obtained if we adopt the rotated reference frame. The
resulting equation is close to the paraxial wave equation,
except for the asymmetry in the coefficients of the transverse
second-order derivatives:

]y8
2 uz +

nz
2

n2]z
2uz = 2inzk0]x8uz. sA12d

The asymmetry between the transverse coordinatesy8 and
z appears as a rescaling of thez coordinate. This means that
the optical beam follows an astigmatic propagation inside the
crystal with different diffraction scales for each transverse
coordinate. Let us separate the dependence ofuz on y8 andz
making uzsx8 ,y8 ,zd=Uzsx8 ,y8dVzsx8 ,zd, in order to obtain
two paraxial wave equations for the beam diffraction in each
transverse direction:

]y8
2 Uz = 2inzk0]x8Uz,

nz
2

n2]z
2Vz = 2inzk0]x8Vz. sA13d

When calculating the propagation of the beam through an
OPO cavity, this diffraction asymmetry can be seen as a dif-
ferent effective length of the crystal for each transverse de-
pendence of the mode function. For a crystal with length,,
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the effective length for theUz propagation will be, /nz, as
usual in the treatment of beam propagation through a uni-
form crystal [28,33]. For Vz, the effective length it will be
,nz/n

2, resulting in an asymmetry in the effective cavity
length for each transverse evolution. The calculation of the
cavity geometry, and the resulting beam parameters ex-
pressed by the Rayleigh lengthxR, will therefore differ for
the two transverse coordinates.

Let us now turn to the paraxial solution for the field po-
larized on thexy plane. Since a plane-wave solution with
Ez=0 can be found, it is natural to conceive a paraxial solu-
tion for which Ez is negligible. Therefore if we choosea
=nx

2 in Eq. (A1) and use the rotated coordinates, we obtain
the following propagation equation forEy:

Fcos2f ]x8
2 + sin2f ]y8

2 − sin 2f ]x8]y8 +
ny

2

nx
2ssin2f ]x8

2

+ cos2f ]y8
2 + sin 2f ]x8]y8d + ]z

2 + k0
2nyGEy = 0.

sA14d

We now try a paraxial solution of the formEy

=uysx8 ,y8 ,zde−ink0x8 in Eq. (A14), using Eq.(A8) and mak-
ing the paraxial approximation to obtain

2ik0nyScos2f +
ny

2

nx
2sin2fD1/2

f]x8uy + tanf8]y8uyg

= Ssin2f +
ny

2

nx
2cos2 fD]y8

2 uy + ]z
2uy, sA15d

wheref8 is the walk-off angle given by Eq.(A10). In order
to obtain a paraxial wave equation, a second coordinate

transformationy9=y8−tanf8x8 is necessary. This transfor-
mation corresponds to a transverse offset of thexy polarized
beam. Using Eq. (A8) and defining j2=sin2f
+sny

2/nx
2dcos2f, we can rewrite Eq.(A15) as

2ik0
ny

2

n
]x8uy = j2]y9

2 uy + ]z
2uy, sA16d

that is, the usual paraxial equation with wave vectork0sny
2/nd

and a rescaled transverse coordinatey9 /j. However, since
nx,ny, this transverse rescaling is much smaller than the one
present in thez polarized field. Therefore, while thez polar-
ization has a significant astigmatism but no walk off, thexy
polarization presents walk off and a small astigmatism. From
now on we shall designate thexy polarized field as theex-
traordinary wave and thez polarized field as theordinary
wave.

As we made for thez component, we can try a factorized
solution of the paraxial wave equation(A16) of the form
uy=Uysx8 ,y9dVysx8 ,zd, so that

j2]y9
2 Uy = 2ik0sny

2/nd]x8Uy,

]z
2Vy = 2ik0sny

2/nd]x8Vy. sA17d

Thus the paraxial propagation inside the crystal is well de-
scribed by Eqs.(A13) and (A17) for the ordinary and ex-
traordinary waves, respectively. A paraxial equation for thex
component of the extraordinary wave can be obtained on the
same lines leading to Eq.(A17).
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